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PREFACE

This manual was prepared at the request of Code 375 of the Applied Science Branch,

Bureau of Ships, in order to provide guidance to design agencies for the silect.ion and appli-

cation of resilient mountings to shipboard equipment. All the mounting arrangements expected

to be encountered in practical installations have been treated. For the more commonly en-

countered arrangements, the computations were simplified and systematized as much as nossi-

le. and charts wore used to reduce further the computational work.

Natural frequencies and normal modes of resiliently mounted equipment can now be

calculated by means of high-speed computers. The David Taylor Model Basin has coded one

.eneral form of the problem for the UNIV A\C. Guidance on the data needed for UNIV-NC cal-

culation is given in BUSIIIPS Notice 10462 dated 6 July 1956. The Electric Boat Division

of the General Dynamics Corporation also has coded a general form of the problem, in this in-

stance for IBM machines. This code has been made available to the Portsmouth and Phila-

delphia Naval Shipyards.

Numero-is individuals of many groups contributed substantially to the compilation of

this manual by many concrete suggestions on the scoi)e of the manual, on information required

for calculating iatural frequencies, and on considerations and precautions in the selection

and application )f mountings. Iurthcr suggestions were made in comments on the several

preliminairy drafts of this manual. Those who should be specially mentioned include Messrs.

k,. Jackson and C.M. Banfield of the Portsmouth Naval Shipyard, CAPT P.G. Schultz, USN,

Mr. A.C. McClute of the General Dynamics Corporation, Electric Boat Division, and Messrs.

P.J. qhovestil and F. Schloss of the Engineering Experiment Station. Comments on drafts of

the manual were also made by personnel of the Naval Research Laboratory, the Mare Island

Naval Shipyard, the San Frncirco Naval .FhinyAIrd, and Codes 371, 436, 5031, and 525 of the

Bureau of Ships. Mr. Roy Ilenderson of Code 375 of the Bureau of Ships contributed greatly

by suggesting sources of information, correlating the contents .o Bureau of Ships develop-

ments, snecifications, and instructions, antl by suggesting changes in the arrangement of the

manual.

Contributions of Taylor Model Basin personnel were as follows: Section A5.1 of

Appendix 5 was prepared by Mr. R.T. McGoldrick and the remaining sections of Appendix 5

ari Appendix 6 were pre)ared by Dr. E.11. Kennard. Dr. E.hM. Bareiss developed a chart for

the solution of cubic equntions, and Mr. R.D. Ruggles suggested a combined procedure for

determining centers of gra% it\ and moments of inertia. Dr. Mark larrison and Mlr. llarrv !?.ich

"ere con ultait- on noi.se and shock. Messrs. %A.D. Sehutt, E.R. Wagner, and R.R. Milam

helped to prepare ani chocked the illustrative problems, charts, and figures.
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NOTATIO1N

B/C1 , " Coefficients in the cubic equations for solution of natural

B2 , 2 frequencies of mounted assemblies with one plane of symmetry2' 2)

(7 Clearance around resiliently mounted equipment, inches

c Numerical factor or ratio; also used as viscous damping
constant

D Maximum expected deflection of the mounting in its axial
direction in a base mounting arrangement, inches; also used
as a constant in derivation of equations for frequencies of
assemblies with syimmetry

/)\, I , /)z For four mountings with mirror symmetry of equipment with
two planes of vibrational symmetry, 1) I. /), , 1) ,re enual,
respectively, to the absolute values of the coordinates of
the effective points of attachment or X, Y, Z, inches.
For other cases Dx, D ,, DZ are equal to the absolute values of
X, Y, Z for four equivalent mountings, and expressions are
given for D , D Z of these equivalent mountings under

the different cases of mounting arrangements, inches

d Perpendicular distance between parallel axes, inches

E Maximum expected deflection of a mounting in the radial
direction, inches

F A function; or a force; or rmplitude of a sinusoidal force

FX, F,, Fz  Forces in the z, y, and z directions, respectively, due to
displacements of the effective point of attachment of a
mounting

f, fn Natural frequency of vibration of a resiliently mounted
asset ably, cycles per second

'max Natural frequency of vibration of a resiliently mounted
assembly in the higher rocking mode in a plane of
symmetxy, cycles per second

/rain Natural frequency of vibration of a resiliently mounted
assembly in the lower rocking mode in the same plane
of symmetry, cycles per second

f rot Natural frequency of vibration of a resiliently mounted
as: embly in a rotational mode, cycles per second

t Natural frequency of vibration of a resiliently mounted
assembly in a translational mode, cycles per second

G Static load on each base mounting in a braced mounting
arrangement, p,)unds
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g Acceleration of gravity, 386 inches per second squired

(1kz Y )2

17 (XkyZ)2

H Perpendicular distance from the plane of the mountings*
to a point on the equipment in a base mounting arrange-
ment, inches

Aeight of equipment, inches

*In more precise terms,this would be the effective point of attachment and may differ among vm-ious types of

mountings frow the geometrical center of a mounting, especially in the Z direction. To determine this point

requitres judgment on the part of the design engineer. Illustrative examples are given as follows for various

designs of mountings:

Z /Approximate effective point and X) plane of attach-
ment for BST (15 cps) mounting. Point is about mid-

height of mounting on Z axis neglecting small de-
flecti-n under load.

Approximate effective point and A} plane of

attachment for EES type A6L (6 cps) mount-

ing. Due to design of mounting, poih, on

Z axis Is about rnidheight of the- rubber on X

the compressed side of the mounting under

load. Vere the large stati,, deflection un- C4-

der load must be considered.
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\lass moment of inertia of equipment,
pound-inch-econd, squared

I\.,I'. , iMass moment of inertia of a mounted assembly about the
X, Y, and Z axes, respectively, pound-inch-seconds snupred

1 IV, I z  Mass moment of inertia of a mounted assembly about the
x, y, and z axes, respectively, pound-inch-seconds squared

I , lz, I z Products of inertia of a mounted assembly with respect
to the xy, y;,, and xz axes, respectively

Constant used in determining the mass moment of inertia
of an assembly by tifilar suspension

h Spring constant of an entire set of mountings relating a
displacement in the y direction with the restoring force
in the x direction and, conversely. A displacement v
in the positive y direction evokes a force -A v in the
x direction; if v and K,, are both positive, the force is
directed toward -. r. Similarly, a displacement v' toward

f , evokes a force in the ?/ direction

S pring constant of an entire set of mountings giving
either the restoring force in the x direction due to unit
rotation about the y axis or the restoring torque about
the y axig due to unit displacement in the x direction.
The sign convention corresponds to that for K1V

K.u,, K,,a, etc. Spring constants of an entire set of mountings defined
by obvious extension of above definitions. For K,
Ka,, etc., the same axis is used twice

k Dynamic spring constant or effective stiffness during
vibration of a mounting with the same stiffness (re-
storing force divided by displacement) in all directior.s,
pounds per inch

k., ky, k 7  Spring constants of individual mountings in the direction
of the X, Y, and Z axes, respectively, (always consid-
ered positive)

ka  Axial spring ."onstant of aav individual mounting (always
considered positive)

kr Radial spring constant of an individual mount (always
considered positive and independent of direction in
a plane normal to the axis of elastic symmetry)

kil "Cross stiffness" of an individual mounting, that is, a
quantity determined by the restoring action with respect
to the ith coordinate due to a displacement with respect
to the Jth coordinate. Either i or j may be a rectilinear
or an angular coordinate
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}, , k x, etc. Spring constants of individual mountings giving the
restoring force in the direction of one of the axes
indicated in the subscript excited by a unit displace-
ment of the effective point of attachment of the
mounting in the positive direction of the other axis
indicated in the subscript. The sign conveniion
corresponds to that adopted for the Ku, 's, etc.

L Length of supporting wires of trifilar suspension,
inches

L1 , L 2  Distance to planes of mountings parallel to the XY
plane in multiplane arrangements with three planes
of swilmetrv

I Length of equipment, inches; distance, inches

'f4. Vyi Vz 'Zestoring motaents about xe, y, and 2 axes, respec-

tivelv, due to) the displacement of the effective
point of attachment of a mounting

m M'.ss of the unit, subbase, or assenibly Il
pound-seconds squared n r inch

N Number of mountings

C
2m

p,, qi Terms derived from the k's and m's of a mounted
assembly and used in the derivation of the fre.
quoncies for symmetrical cases

R Reaction force, pounds

r Distance from the supporting wires to the center of
gravity, i.e., center of platform, of the trifilar
suspension, inches

rX, Ty, t 2  Radius of gyration of a mounted assembly about the
X, Y, and Z axes, respectively, inches

S Distance between centers of the most widely spaced
mountings in the direction being considered, inches;
also used as constant derived from parame --s of
mounted assembly in frequency equations ,.
symmetrical systems

SI' S12' I3 Constants derived from spring constants of mountings

used in analysis of symmetrical cases

T Period of oscillation (time in seconds from one
extremity to the other and back to the first, i.e.,
time of one cycle), seconds; also used for
transmissibility
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,t, ,', , Small displiacenienLts of the center of mass of the
m,.ounted assembly in the x, y, and 2 directions,
respectively

W !,eight of mounted equipment and subbase, pounds

U, Width of mounted equipment or subbase, inches

., Y. Z Rectangular coordinates with origi-i at the center of
mass of the mounted assembly when the axes are
principal axes of inertia of this assembly; the
coordinates of the effective point of attachment of an
individual mounting with respect to these axes

.\, ', Z Coordinates of the center of gravity of an assembly of
equipment and subbase with respect to an arbitrarily
chosen set of axes, inches

Length, inches; distance, inches

x, y, z Rectangular coordinates with respect to a set of axes
of arbitrary orientation. In the dynamical equations
this origin is taken at the center of mass of the
mounted a&sembly

X11 Y,' -' ;Rectangular coordinate axes parallel to the x, y, and
a axes but with origin 0, at an arbitrary point on the
axis of symmetry of an individual mounting

.-, y, 2 Coordinates of center of gravity of mounted assembly
or of an individual unit with respect to x, y. and z
axes

a, ., y Small rotations of the mounted assembly about the
z, y, and z axes, respectively

Sign of summation over all mountings in an installa-
tion. When any factor is the same in all terms of
a sum, this factor can be put in front of 1, for
example, if kX is the same for all mountings, then
1Xk y 2 = kX. y 2

Phase angle by which the driving force leads the
displacement in the steady-state vibration of a
system with a single degree of freedom

6 , 67 Direction angles between the axis of symmetry of
an individual mounting and the X, Y, and Z axes,
respectively

Direction angles between the axis of symmetry of
an individupl mounting and z, y, and z axes, respectively

co. Circular frequency

Undamped natural circular frequency of a system .f -ne
degroe of freedom
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INTRODUCTION

A resilient mounting is defined as an item designed to incorporate rigid members for

attachment and resilient elements for the purpose of isolating shock, noise, and vibrations of

a continuous or intermittent origin and to serve as a foundation support for an item of equip-

ment to be , isolated. The general nomenclature has been chosen because of the difficulty

in defining :ipecifically a shock, noise, shock-noise, or vibration mounting. Mountings em-

ployed in one installation primarily to isolate noise or vibration may also provide adequate

shock protection in the same or another installation.

In the application of resilient mountings to item -)f shipboard equipment, it should

first be determined why mountings are needed and for Y...at purpose. the chief aim i6 to have

shipboard equipment designed to be inherently noiseproof, shockproof, and capable of with-

standing normal shipboard vibration when the equipment is bolted down rigidly. Equipment

that has been proved inherently shockproof by shock machine tests requires no resilient

mountings, except when the equipment generates noise which must be attenuated because of

a shipboard requirement. Equipment that has passed shock and vibration tests can be ex-

pected to xith tand normal vibratjon. experienced aboard ship when bolted down rigidly.

Laboratory tests1 indicate that even electronic equipment will often satisfactorily pass shock

arid 'ihration test- without resilient mountings.

, hen it is nece sary to employ mountings, care tru-t be exercised to prevent excessive

amplification of vibration resulting from excitations in the equipment itself or from propeller,

hull, or adjacent machinery.

On submarines, it is desirable that certain natural frequencies of equipment-mounting

installations be lower than the frequencies of exciting forces or motions in order to reduce

noise transmission. Fortunately, low-frequercy mountings can be employed on submarines

becaufie of the small vibration amplitudes that usually result from the propeller and hull ex-

citations. On the other Land, for surface ships, it is often desirable to have the natural fre-

quencies of equipment-mcunting installations higher than the vibration frequencies excited

by propeller forces in order to avoid resonances. In such installations, amplification of the

exciting forces or motions will exist, but if such amplification is no greater than three, it is

generally considered acceptable. fhe higher shaft speeds and the greater iiumber of propellcr

blades on more recent ships make it nore difficult to avoid resonances with vibration fro-

quencies excited by propeller forces. In these irstances, mountings with high damping

characteristics may havn to be used.

rhe calculations involved in the solection and application of mountings are, at best,

time-consuming and tedious. Information must be available on the characteristics of 'he equip-

mnet and mountings and the exciting frequencies that may be encountered. *ro meet the re-

quirenients of specific conditions for a particular installation, a tentative selection and

IReferences are listed on page 137.



positioning of resilient mountings must first be made. Natural frequencies of the resiliently

rnounted systems must then be calculated. If the design requirement, are not met, the mount-

ings will need to be repositioned or a new selection made, and the frequencies must be calcu.

lated again until the design requirements are satisfied.

Accordingly, this "M1ounting Guide" has been prepared to aid design engineers and

engineering draftsmen in solving problems dealing with the selection and application of resil-

ient mountings to items of shipboard equipment. The main objective has been i present quick

and practical methods of solving mounting-installation problems by utilizing charts, tables,

and simple formulas wherever possible.

This guide contains three chapters and seven appendixes, the purposes of which are

as follows:

(a) Lo describe briefly the nature and principles of noise, shock, and vibration isolation-

Chapter 1 and kppendix 1.

(b) To discuss the physical constants needed for the selection and application of resili-

ent mountings and to present. methods for their determination-Chapter "2 and Appen-

d ix .3.

(c) To emphasize the general considerations and list the precautions that should be ob-

served in the selection and application of mountings-Chapter 1.

(d) To present methods for calculating 'he natural frequencies of systems with variouW

types of mounting arrangements-Chapter 3 and appendixes 2 and 6.

(e) To present additional information to engineers desiring to delve more deeply into

the theory of isolation and the equations of motion-Appendixes 1, 5, and 6, Refer-

ences, and Bibliography.
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CHAPTER]1

NATURE OF THE TRANSMISSION OF NOISE, SHOCK, AND VIBRATION

* 1.1. NOISE, SHOCK, AND VIBRATION

In the selection and application of resilient mnountings to shipboard equipment, the re-

* duction of the transmission of noise, shock. and vibration Is of concern only for certain paths

of transmission. Applied shock and vibration are transm-,tted to shipboard maichinerN and

equipnment through che ship structure. In the opposite direction, noise and vibration are trans.

Mitted from- machinery through the intervening ship structure to the hull and water. Such noise

mayv then be transmitted to an (ienmy ship or to listeningy devices in the ship; see Figure 1.

FEt

Applied
Shock

Vioration to
E quipment4

Enemy
Vessel : Listening

Oe vi cc

F-igure la - Vibrat ion and Shock Figure lb -Noiae and Vibrntion

to Fquipment from Machinery

Figure I -lDirections of Transmission of Noise, Shock,
and Vibration on Shipboard

Trhe reduction of noise, shock, and vibration is nocessary for various reasons. Noise

may either reduce the iisteninig rainge of the shin itself or increase the chance of detection

of the ship) Ib lis teners on other shios. A~pplied shock, such as thait of noncontact under.

* water explosions, may damage or render inoperable certain types of e(iuir~ment. NaIval efluip-

mont, with the exception of sonme electronic units, is expected, however, to withstand the

norifial vibration existin4- on shipboard; therefore it is only necessary to prevent excessive

amplification of those vibrations by proper design of mountings.
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There are four approaches to the problem of reducing the severity of noise, shock, and

vibration on shipboard:

1. Improvement or modification of the equipment design.

2. Relocation of equipment aboard ship.

3. Installation of re3ilient mountings.

4. Proper maintenance and bilancing of equipment.

Design improvement embodies design of ship structures, such as machinery foundations,

as well as design of the inaividual machinery items, particularly design that avoid.3 resonances

in structures and appurtenances. It is assumed that conditions resulting in abnormal opera.

tion, such as excessive unbalance or misalignment of propellers, shafting, or machinery, al-

ready have been remedied. Properly aligned equipment can easily become misaligned in

service; therefore it is essential that equipment be checked frequently and realigned when

necessary. As design of equipment for shipboard installations improves, fewer attenuating

devices, such as resilient mountings, will be needed. There are certain locations on board

ship where the noise, shock, and vibration excitations have smaller amplitudes than in other

parts of the ship. Both design improvement and relocation can reduce the exciting forces and

motions and consequently modify the response.

Meanwhile, the need for installation of machinery and equipment on resilient mountings

continues. Resilient moun :ngs can reduce the effects (transmissibility) of shock motion and

vibration on equipment and can reduce the transmissibility of noise and vibration from machin-

ery to the ship structure and the water. Improperly selected resilient mountings, however, may

increase rather than decrease the transmissibility.

1.2. RESPONSE OF RESILIENTLY MOUNTED BODIES

A body that has extremely high stiffnesses between its components may be treated ap-

proximately as a rigid mass. If such a body is supported by a massless spring and constrained

by frictionless, rigid guides to move only in a vertical direction in the plane of the paper,

see Figure 2, it is a one-degree-of-freedom system, that is, the position of the mass at any

instant can be described by one coordinate. The system has one natural frequency corre-

s.ponding to a vertical mode.

If the vertical guides are now removed, with the motions still confined to the plane of

the paper, and the spring has vertical, horizontal, and rotational stiffnesses, Figure 3, the

system has three degrees of freedom and therefore has three natural frequencies. Two of the

natural frequencies due to horizontal vibrations cause modes of rotation about two separate

axes perpendicular to the plane of the paper. These are designated rocking modes. The

rocking mode frin is caused by the mass attempting to move in a horizontal direction, but be-

cause of the restraint offered by the mountings, the mass rocks about an axis below the cen-

ter of gravity. Th rocking mode frn.l is initiated by the tendoncy of the mass to rotate

4



fmax

/fmin

Figure 2 A One-Degree-of- Figure 3 A Three-Degree-of-
Freedom System Freedom System

about the center of gravity, but since the mountings constrain this rotation, the mass rocks

about an axis above the center of gravity. In general, in a system of throe degrees of free-

dom, each mode will involve all three coordinates, but because of the symmetry in this ex-

ample, the third natural frequence ftr is for a pure vertical translational mode.

Let it now be assumed that the center of gravity of the mass is at its geometrical cen-

ter and that the principal axes of inertia are the X, Y, and Z axes and let the system be sup-

ported on eight resilient mountings symmetrically positioned about the mass, as in Figure 4.

Then the system has natural translational frequencies in the X, Y, and Z directions and also

natural rotational frequencies about the X, Y, and Z axes. Thus the system has six natural

frequencies, or six degrees of freedom and six natural frequencies in all.

If there is partial or complete lack of symmetry, certain of the translational and rotation-

al modes may be replaced by rocking modes, each of which has translational and rotational

comporients of motion. In general, a mass supported by resilient mountings has six normal

modes of vibration and therefore six natural z
or resonance frequencies. It is possible, how-

ever, for two or more modes to have the same

frequency. Each mode may have translational

and rotational components. Such a system has

the property that a free vibration may exist in

any one of these modes without exciting any

of the others.

Rocki,-. modes, however, are not the

most complics',od types of motion that can

occur ii a normal mode of vibration of a rigid

mass. The body may move in rotation about Figure 4 - A Six-Degree-of-

a particular axis and in translation along an Freedom System



axis inclined to the first axis. In general, a

free vibration may exist in any mode without

exciting any of the other modes.

For a frequently used arrangement,

sometimes called "bottom mounting" or

"base mounting," with four identical mount-

--- - -- -Y ings symmetrically attached to the base of a

unit which is also symmetrical, Figure 5,

the horizontal translational mode of vibration
67 z7 along the Y axis and the rotational mode

4t about the X axis are supplanted by two rock-

ing modes about axes parallel to the X axis.

Figure 5 - Typical Base- Mounting Likewise, there are two rocking modes about
Arrangement axes parallel to the Y axis. There are two

other modes, one rotational about the Z axis

and the other translational along the Z axis, each having its own natural frequency. There

are six modes of vibratio-i in all: four rocking, one translational, and one rotational.

1.3. TRANSMISSIBILITY

Consider the one-degree-of -freedom system shown in Figure 2. If the mass is displaced

and then released, it will oscillate vertically at a substantially constant period or frequency,

but the amplitude of vibration will gradually decrease because of damping forces.

If, now, instead of an initial displacement, a sinusoidal force of constant amplitude is

applied to the mass, see Figure 6a, or if a sinusoidal motion of constant displacemen. is

applied to the spring support, see Figure 6b, after a short transitional interval, the mass will

move in a forced vibration of constant peak amplitude at the frequency of the exciting force

A sineit

NF sin , t m IN
\N

Figure 6a o Sinusoidal Force Applied Figure 6b - Sinusoidal Motion of the

t-) the Mass Mounting Support

Figuro 6 - Motions and Forces Applied to an Undamped One-Degree-of-Freedom System



or displacement. For a given amplitude of

excitation, the amplitude of the forced vibra-

tion will depend upon the magnitude of the

damping and upon the ratio of the exciting 2_,

frequency to the natural frequency of vibra. ,-2.

tion of the mass. E

The variation or amplitude with fre- - - -

quenc s shown for a typical one-degree-of- -

freedom system in Figure 7, in which the or-

dinate is proportional to the amplitude of vi- 0 1 2 3

bration of the mass. As shown by the peak Frequency Ratio: Exciting Frequency
to Naturai Frequency of the Mass-

in the curve, the amplitude of vibration is a Spring System

maximum when the frequency of vibration

nearly equals the natural frequency of vibra- Figure 7 - Response of a One-Degree-of-

tion of the mass. Mith less damping, the peak Freedom System to Excitations at
would bo higher and the frequency closer to Various Frequencies

the natural frequency; with greater damping,

it would he lower.

The ordinate in Figure 7 actually reprosent, what is called the transmissibility for the
mas3 on the spring. WAhen the motion is excited by a sinusoidal force applied to the mass,

sinusoidal force is also transmitted through the spring to the supporting base. The ratio of

the amplitude of the force transmitted to the base to th, ,...iting force is the transmissibility.

Tho same number also represents the ratio of the amplitu': )f Ibratiort of the mass to the

amplitude of vibration of the base when the motion is excirjI by rootoins of the base. It will

be seen that the transmissibiliLy is unity for a static force or displacement, is greater than
unity at frequencies between zbro and resonance, and eventually becomes less than unity at

frequencies well above resonance.

The phoromenon of forced vibration is described analytically in Appendix 1.

1.4. SUITABLE NATURAL FREQUENCI PS

Frequency requirements related to ship vibration, to shock motion, and to noise excita-
tion will be described successively. First, however, the importance of these requirements

should be discussed. On submarines, the primary purpose of resilient mountings is noise re-

duction. KEquipnment resiliently mounted to reduce noise must also be able to withstand shock

niotion;s of relatively large magnitude and vibration, with some allowable magnification of

motion without failure or maloperation. On surface ships, at least for the present, noise ro-

duction is less important, but the equipment must withstand shock motions and also vibrations

rmderatel\ magnifiol in amplitude. Much shipboatd equipment will perform satisfactorily

undor slhock excitation, and even more equip!Riont undo- :,on ,,x ci ut , , it is rigidly



mounted. Therefore, for this sort of equipuient, no resilient ,mountings need be provided ex-

cept where noise reduction is required.

1.4.1. VIBRATION

rwo types of vibration excitation of resiliently mounted equipment occur on shipboard,

excitation from ship structure and self-excitation of equipment by unbalanced moving parts.

The hull of a ship can be excited by vibration in the propulsion machinery system as

well as by thrust variations due to the variation of pressure on each propeller blade as the

propeller rotates. The lateral component of thrust variation causes vibration at frequencies

equal to the shaft rpm multiplied by the number of blades of the propeller. If the excitation

caused by thrust variation has a frequency equal or close to one of the natural frequencies of

the hull in flexura! vibration, then the hull may respond to this excitation at amplitudes large

enough to be troubiesome. For most naval -hips, the frequency of this excitation has not

exceeded 25 cps (1500 cpm), but, with the trend toward higher shaft speeds and 5- and 6-0laded

propellers, it may become as high as 33 1/3 cps (2000 cpin).

One way of avoiding resonances is to .een the resonance frequencies of the equipnient

above the excitation frequencies. As shown by the transmissibility curve, Figure 7, the

steady-state vibration cannot then be kept from exceeding die viratiun of the foundations, but

it can he kept within reasonable limits. In the absence of damping, a satisfactory limit of

magnification is obtained if all important natural or resonance frequencies of the equipment

are made at least 1.4 times as great as the maximum excitation frequency.

If a surface ship, for which structure-bome noise is of minor importance, has a highest

propeller-blade excitation frequency of 20 cps (1200 cpm), the natural frequencies of resiliently

mounted equipment should be at least 25 cps (1500 cpm) and preferably 28 cps (1680 cprri).

On this basis, many units of radio and radar equipment have been installed with mountings

having a natural frequency of "25 cps under rated load. For many classes of surface ships, the

typical vibratory displacement of the hull is about 15 mils single amplitude vertically, about

two thirds of that horizontally, and less than one-third fore and aft in the few instances

meapsured. On infrequent occasions, particularly luring hard turns, magnitudes several times

as great occur. Certain maximum environmental v slw.i are given in MIL-STD-167 (Ships),

'Mechanical Vibrations of Shipboard Equipment," 2O 0ec 1954.

Submarines have propeller-blade excitation frequencies up to 31 cps (1850 cpm). In

order to reduce as much as possible the ttansmissibility of noise from machinery through the

hull into the water, the trend is to install mountings with natural frequencies ranging from 3

to 15 cps at rated loads.

Steady-sate vibration is noticeable throughout the entire hull only near the critical

speeds, that is, when either the shaft frequency or blade frequency approximately coincides

with one of the natural frequencies of the hull, but at intermediate excitation frequencies,

there- may he little or ."o vibration on the ship anywhere except at the at.ern. 'rho rrced

vibration i.- uuallv most severe at high speeds and is aggravated on ships with large overhangs



at the stern. rhe vibrations may have larger amplitudes on superstructure members such as

masts or directors. If these members are located near a nodal point of the hull for the particular

mode of vibration that is present, they may be set in rotational motion because the nodal point

is a point of maximum change of slope. If their own natural frequencies lie near one of the

natural frenuencies of the hull, the amplitude at the top will be much greater than that at the

base.

rhe installation of equipment in structures such as masts, directors, high superstructures,

and fantails should be avoided wherever feasible. Sometimes equipment that n-eds to be re-

siliontly mounted can be located at a lower level in the ship away from the fantail. Loca-

tions, such as light bulkhead plating which may itself resonate at excitation frequencies

within the operating speed range of the ship, should also be avoided whether or not the equip.

n;ent is resiliently mounted. 2 Thi - does not preclude u,yorting the enuimment on bulkhead

stiffeners.

The other aspect of vibration, excitation of equipment by its own mioving parts, also

requires some comment. Unbalances of internal rotating parts can cause excessive vibration

if the resulting, excitation frequency is close to one of the natural frequencies of vibration of

the equipment on its mountings. If suitable natural frequencies of the equipment on its mount-

. cuuot be obtained by rearrangement or substitution of mountings, then the vibration

displacements can be reduced by substitution of different types of equipment. when available,

such as those with different operating speeds.

Ways to avoid excessive vibration have been described previously, but no quantitative

statement has been offered as to what constitutes excessive vibration. Without attempting an

exact definition, it may be said that vibration is excessive when it causes damage or there is

danger of damage to structural components, when it interferes with the operation or causes mal-

function of equipment, or when it is an unnecessary and avoidable nuisance.

Some resonance frequencies of resiliently mounted equipment prove to be relatively un-

important because of the absence of excitation for these corresponding modes of vibration.

Orientation of equipment may permit disregard of these modes. Equipment and machinery on

shipboard are normally oriented in a fore-and-aft direction. Since there is little excitation of

equipment in this direction, either internally or externally, modes of vibration in a fore-and-

aft direction are not as important as other modes with the exception of those of longitudinal

vibration of the propulsion machinery.

1.4.2. SHOCK MOTION

Shock excitation of resiliently mounted equipment is produced by motions of the, sup-

ports of the resilient mountings. These supports or foundations have shock motions involving

sudden velocity changes which may be as great as 75 fps and may occur in about 2 msec. The

mmchanizm of shock excitation is treated in several references and will not be repeaLed except

to mention that its- effect varies considerably deponding on many factors including size and
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wejg .v of the equipment, its location in the ship, the class of ship, the time history of the

shock excitation, and the response characteristics of the equipment and its components. Only

the following topics will be discussed: the significance of the Military and Bureau of Ships

specifications, acceptance testing for shock motion, the influence of equipment location on

severity of shock, and design changes that may improve resistance of equipment to shock

motion.

The following specifications have been issued for evaluating the performance of equip-

ment under shock and vibration:

(a) Military Specification MIL-S-901 3 describes shock tests only for Class III (High-

Impact) shockproof equipment.

(b) Military Specification MIL-T-17113 (SHIPS) 4 prescribes shock tests and is used

primarihl for evaluating electronic equipment. In this specification, tests on

the mediumweight shock machines are divided into Class A and Class B shock

tests. Tests on lightweight shock machines are conducted with reduced heights

of hammer blows as compared with tests, specified in Specification MIL-S-901.

In MIL-T-17113 (SHIPS), provisions are also iarie for testing equipment with

or without resilient iountings.

Those specifications and testing machines aro used by the Navy to give some assurance that

equipment passing such test- will give satisfactory performance in service.

The location of the equipment aboard ship has considerable influence on the severity

of shock motion that must be withstood. For excitations caused by underwater explosions,

the most severe condition occurs when the equipment is mounted on the hull itself, especially

the hull plating, which is subject to direct impact of the explosion pressure wave. There is

a trend toward decrease in shock severity with increased distance of the equipment from the

hull. Air blast caused by gun fire or exploding bombs can also cause shock excitation of ex-

posed structures such as decks, side plating of superstructures, and directors. Wherever

possible, equipment should not be exposed to such excitations by attachment to the inner

sides of directly exposed structures.

Shock tests and "striking" tests show that the vibration of structures, such as hull,
side plating, and decks, is excited at many natural frequencies simultaneously. In a number

of tests, the dominant vibrations (the components of vibrations having the largest amplitudes)

for surface ships were in the range from 35 to 100 cps, with many at about 50 cps. For
submarines, the dominant frequencies were higher, principally in the range of 100 to 400

cps. 2 These are frequencies at which the structures respond, and they would be the principal

frequencies of shock motion at the points of attachment of mountings if equipment were in-

stalled here.

Modifications in the design of equipmont have often made it capable of withstanding
shock excitation without the use of resilient mounti-igs. 5 Items such as switches and levers

have been designeri with counterweights to prevent maloporation. Methods of suppott and
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fastening have been altered, and materials have been substituted so that now many items can

be solidly mounted. Equipment with rotating or reciprocating parts has been strengthened by

increasing bearing diameters and lengths and shaft diameters, so that shock damage is elimin-

ated or reduced and the machinery operates satisfactorily despite the excitations. Htowever,

equipment of this sort for submarine service and, eventually, for certain types of surface ves-

sels may still require resilient mountings to reduce the transmission of noise to the water and

to sonar gear.

1.4.3. NOISE

Structure-borne and air-borne noise is generated on shipboard by rotating and reciprocat-

ing parts of mechanical equipment, by electrical equipment, and by moving fluids. rhe
structure-bovne noise is of primary importance at present in the study of methods for reducing

noise. In resiliently mounted equipment, structure-borne noise is transmitted through the

mountings and ship structure to other parts of a ship and radiated into the water, generating

vater-borne noise. Structure-borne noise may be loosely defined to be vibration with small

amplitudes and with frequencies above about 20 cps; structure-borne noise is the vibration of

structures that will generate sound waves in the surrounding fluid mediums. In a bioader

sense, it may be defined as vibration at any frequency and amplitude that interferes with a

ship's own listening devices or that may be detected by another ship. Other sources of noise

on shipboard, such as propeller noise, hydrodynamic noise, and propeller-shaft squeals, 6 are

not discussed since they are not of concern in the selection of mountings.

At present, resilient mountings are used for machinery on submarines primarily to re-

duce noise. It is expected, however, that certain types of surface vessels with specialized

service requirements may also require this protection. More extensive discussion of the influ-

ence of location, design, and mountings on noise transmission has been given elsewhere. 6

Equipment with rotating and reciprocating parts can generate noise of three types: 6

1. Noise of definite frequencies, for example:

(a) Running frequency caused by unbalanced rotating parts;

(b) Gear noise at a frequency equal to shaft speed times the number of teeth;

(c) Noise at armature slot frequency, which is a frequency equal to the shaft

speed times the number of slots; and

(d) Noise at the commutator frequency.

2. Noises of definite frequencies which do not change with the speed of the machines,

such as tree vibrations of machine cornpGnents, the subbase, or the foundation, caused by

impact of machine parts such as cams or valves.

;J. Random noises caused by impacts occurring at irreguiar intervals.

Resilient mountings can reduce the structure-borne noise transmitted to the ship struc-

ture and to the water. ['ho lower the rated natural frequency of the mounting, the greater will
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be the overall attenuation of noise. Reducing the rated natural frequency may, on the other
hand, create problems in the stability of equipment, particularly under such motions as roll

and pitch.

The loading on the mountings cannot always be exactly the design loading. For re-
duced noise transmission, it "s better for a mounting to be moderately overloaded than con-

siderabl:: underloaded. Subject to experimental verification, it is believed that overloads

in the order of 10 percent will not materially affect the strength of a mounting under shock

excitation.

A characteristic of mountings that must be considered in attempting to reduce noise
transmission is the phenomenon of standing waves or resonance vibration within the mountings

themselves. For this reason, a reduction of the rated natural frequency of the mounting does

not neces arily guarantee a reduction in transmission throughout the noise spectrum. It may

happen that one of the excitation frequencies coincides with one of the standing wave reso-

nances, causing greater noise transmission at this frequency.

It is not necessary to reduce the noise of all equipment; it would be futile to reduce

noise of certtin units while units with much greater noise levels are not improved. The

priority of items in a noise-reduction program depends also on the operating condition of the

dhip. In subinanes, the first step has been to improve noisy machinery items that must be

operated during listening condition. Further study is needed on the effects of transmission

of noise into the water by intervening structure between a machine and the hull and the

sub-problem of the design of the mounting supports, that is, the foundation of the machine.

But if the more important noisemakers on submarines, especially those that need to be oper-
ated during listening condition, can be segregated and located remotely from listening devices,
the listening ability of a submarine can be improved considerably.

In selecting mountings and in planning the installation of machinery, precautions should

be taken lest the beneficial effects be spoiled by the incidental introduction of acoustical
shorts. For example, flexible couplings for shafting and piping and flexible conduit for elec-
trical wiring need to be provided. Pipir.g may need to be further isolated by suspending it in

rubber-lined hangers.

Redesign of machinery can reduce its noise generation. 6 The use of helical and worm
gears instead of spur gears, nonmetallic gears or belts instead of metallic gears, and sleeve

bearings instoad of ball bearings often helps to reduce noise at its source. Dynamic as well
as static balancing of rotating parts reduces the exciting forces, as does proper design of

slots and poles of motors and generators.

The final test of the effectiveness of a noise-reduction program is a noise survey.

1.5. ELASTIC FOUNDATIONS AND EQUIPMENT

In presenting methods for the calculation of natural frequencies of vibration in Chapter

3, it will be assumed iIat the niountings are attached to infinitely stiff foundations and that
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the equipment is also infinitely stiff internally. To make these calculations applicable, the

subbase, legs, frame, and principal components must be rigid enough so that the assumed in-

finite stiffness is validly approximated. Phese assumptions are not valid for all shipboard

installations.
7

If the foundation to which an isolation mounting is attached is flexible and relatively

n;assle.'s, then the natural frequencies of the assembly will be lower than those calculated,

without correcting for flexibility of foundations. If the foundation has appreciable mass as

well as flexibility, the assembly will have additional degrees of freedom nnd the normal an.i-
.si will not be entirely valid. In this case, bernuse of resonances in higher modes, magni-

fication may appear at frequencies where the analysis, without correction, would predict atten-

uation. 'his effect may result in greater noise transmission than anticipated in certain fre-

quencv ranges.

]'he possibility of increased transmissibility due to elasticity of foundations can be

minimized, particularly for equipment such as machinery with internal vibration excitation, by

avoiding the installation of equipment on light bulkhead or deck plating. Where resilient

r-..untins, are u;ed, equipment foundations should be integrally stiff and securely attached to

ch)oe tLiffeners of the ship structure which carry the equip.-nent load. These precautions re-

duce the response of equipment to propulsion-system excitation and may reduce noise trans-

mi sion.

Flexibility of equipment. has effects on the transmissibility curve similar to the effects

of flexibility of foundations. 8 Resonances will appear superimposed on the attenuation por-

tion of the transmissibiiitv curve depending on the number of components in the equipment

with supports of low relative stiffness and on the weights of these components. Normally the

ria_-nification factor of the equipment will not greatly exceed unity; therefore vibration trans-

;,ission need not be severe. Damaging effects may occur, however, if internal components

are in resonance with vibrat~on excitations. Testing the equipment, when not too large, in

shock machines or even vibration machines will indicate whether damage may occur because

of relatively low stiffness within the equipment itself. If there is internal excitation, reduction

of noise transmission from the equipment may be difficult unless some of its components can

be redesigned.

E~xperience has indicated that for installations where equipment was relatively limber,

such as radio units with light frames and heavy transformer components, the actual fundamen-

tal natural fr-qucnc% of the unit of equipment on four mountings was 15 to 20 percent lower

than the computed natural frequency. If the stiffness of the equipment, as determined by vibra-

tion teLts on it, mountings, is compared with that of an equal solid or stiff mass on the same

miountin-s, then a stiffness ratio le.. than unity is obtained. The reciprocal of this stiffness

ratio, the flexibility factor, when multiplied by the actual mounting stiffness results in a re-

quired stif[ness on the basis of which mountings may be selected. The actual mounting stiff-

ne a-Auld stiii be used in calculationm', ,ut the selection of a somewhat stiffer mountin-,
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determined by multiplying the actual stiffness of the mounting by the fl(.xibility factor, would

compensate for the flexibility of the equipment. In a similar manner, if the foundation itself

is flexible, the flexibility factor may be determined from the stiffness ra'.io by a vibration test

of the equipment on flexible foundations in comparison with an infinitely rigid base. The

flexibility factor is never less than unity.

For lightly constructed equipment on four mountings, flexibility factors as great as 1.4
have been observed. F"or sturdy radio and radar units, the ratio may be 1.1 or 1.2. rhe use

of more than four mountings tends to reduce this factor because of support provided by the

mounting fittings. For motors and machinery of small to medium size, the factor can be assumed

to be unity, particularly if components, such as rotors and shafting, have comparatively large

diameters. hether this will hold true for larger units, such as diesel engines, remains to be

determined by design computations and shipboard vibration tests.

It must be adnitted that there are very few experimental data concerning the flexibility

of equipment and of foundations. However, the approach discussed above is believed to result

in better approximations to desired natural frequencies of installed resiliently mounted equip-

ment. In any case, the amount of cut-and-try should be reduced.

1.6. CLEARANCE

\dequate clearances around muountings Knd equipment, are necessary to permit the

mountings to function properly and to prevent damage to the mountings and equipment because

of excessive shock or vibratory displacements. On the other hand, since equipment with re-

silient mountings occupies more space than rigidly mounted equipment, no more space must

be requisitioned than is actually necessary.

The value of the maximum expected deflection of mountings, i.cluding allowable de-

formation of metal parts, must be known in order to determine the necessary clearance for a

unit of equipment. According to data now available, the greatest deflection occurs during

shock machine tests and the least when the mounting is subjected to the prescribed static

test load. Deflections obtainod during full-scale shock tests are between these extremes. As

a general rule, mountings should not be installed aboard naval ships until samples have been

subjected to at least shock, static load-deflection, and vibration tests to obtain information

for calculating clearances. Specific information on deflections for mounting. should be ob-

tained by reference to reported characteristics of resilient mountings or to the latest Bureau

of Ships Instruction 9110.4.

Another consideration in the selection of resilient mountings for equipment, particu-

larly for shock isolation, is the amount of permissible travel or deformation of the mounting.

This depends upon design and, in the case of rubber mountings, on the thickness of rubber

in the direction of travel. A mounting of good design will have minimum overall size for a

particular load rating and spring constant., thus conserving space in the installation of equip-

mient. A nucess;ary precaution is the avoidance of hard bottoming of the equipment either
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because of inadequate mounting design or because of inadoquate clearances of adjacent
structures.

The selected value of deflection gives directly the clearances needed for translational

modes of motion. From this value and the dimensions of the equipment, clearanc ,s for rota-

tional modes may be computed, and those for rocking modes may be estimated.

Th. required clearance C (in inches) around equipment may be determined approximately

for various mounting arrangements as follows:

1. For three planes of symmetry as illustrated by a center-of-gravity mounting arrangement,

Figure 8a, the clearance C around the equipment should be equal to the maximum deflection

that occurs across the mounting in either the axial or radial direction. In cases where the

center of gravity is asymmetrically located within the equipment, greater clearance may have

to be provided at points remote from the center of gravity.

T
H

S A-
Fig -re 8a - Center of Gravity Figure 8b - Base Figure 8c - Braced

Figure 8- Mounting Arrangements

2. For two planes of symmetry as illustrated by a base or bottom mounting arrangement,

Figure 8b, the clearance C can be calculated from the approximate formula 9

2DII
C - +E

S

where 0 is the maximum expected deflection of the mounting in the axial direction, inches,

F is the maximum expected deflection of the mounting in the radial direction, inches,

I/ is the perpendicular distance from the plane of the mountings to the point on the

equipment (see footnote on page iv of lPeference 9) in inches, and

S is the distance between cente of the mosL widely spaced mountings in the direc.

tion being considered, inches.

3. For one plane of symmetry as illustrated by a braced mounting arrangement, Figure 8c,

the clea:ance C around the equipment should be equal to the maximum deflection that occurs
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across the aiounting in either the axial or radial directions. If the mountings are attached

away tron the corners of the equipment, that is, if the top mountings are lowered or the

bottom mountings are spaced closer together, re-evaluation of the mounting geometry must be

considered and allowance must be made for greater clearance.

If two resiliently mounted units are placed next to each other, the clearance between

them must be the sum of the clearances required for each of the units since the motions of the

units may be out of phase. Protuberances such as knobs, sockets, nuts, dimples, and flanges

must be accounted for in providing clearances. If there is a rigid conduit or pipe attached to

the equipment, then adequate clearance m.|st be provided around the piping up to points of

flexibility, such as rubber or bellows joints or flexible U-bends, to prevent striking. In some

instances, clearance may have to be provided beyond these points of flexibility in the form of

rubber-lined hangers for the pipe or conduit.

In letailing the attachment of the resilient mounting to the equipment or subbase and

to the foundation or supports, provision must be made for free motion of the resilient elements

of the mounting. Tis is illustrated in Figure 9 for a Portsmouth D3ST mounting. If the hole

in the subbase plate were small so that the plating extended to points A, A 2' the rubber of

thv mounting would strike the subbase plate and eventually fail because of the cutting and

abrading action of the plate. 'rhe hole in the subbase plate should be made as large as pos-

sible, consistent with strength, leaving sufficient material at the bolt holes. Chamfering the

plate edge is also beneficial.

Finally. all the care, effort, money, and time expended in selecting and applying resil-

ient mountings goes for nought if indiscriminate permission is given to use the clearance

spaces for other purposes. It is true that certain parts of the clearance spaces can be more

fully utilized, but the mounting engineer should always have authority as well as responsibil-

ity to control this space in order to prevent not only the nullification of isolation but also

damage to the equipment.

It is difficult to establish criteria of acceptable maximum motion for resiliently mounted

equipment because each installation has to be judged separatply. Previously, a procedure for

calculating the clearances required for motion oL the equipment due to shock excitation was

presented. If sufficient space i3 not available for the clearance required for a bottom mount-

ing arrangement, or if the violent motion is such that the equipment intrudes in space where

perscnnel normally are working, then the equipment may be damaged or personnel injured. In

these insLances, it is often bettor to use braced mounting arrangements or stabilizing mount-

ings to reduce the excessive rocking motion of the equipment.

There are other circumstances under which motion.- may be even larger, usually for

bottom mounting arrangements. The equipment may sway from one extreme position to anotler

because of a ship's rigid-body motions sucl as roliing and pitching. It is not likely that in-

:Atallation., will be encountered in which gravity will have an important effect on any of the

natural frequencies of the mounted equipment. Moreover, since the lowest frequency of the
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assembly will usually be at least several

times as high as the frequency of the ship's

rigid-body motions, no resonance magnifica-

tion of these slow motions into a large move-" b

ment of the assembly relative to the ship A A,

structure is likely to occur. ilowever, in

mounting equipment with a high center of

gravity relative to the width of the base, the

static deflection due to inclination of the ship
\Ain a seaway should be estimated for an angle ' Fudto

of, say, 30 dog. If it is found that the upper

corners of the assembly would take up a large

part of the clearance, additional clearance

should be allowed, If the required clearance

becomes excessive, the effect of static in- Figure 9 -Detail of Portsmouth BST
Mounting Attached to Subbase

clination can be decreased by setting mount, and Foundation
ings farther apart, introducing stabilizing

mountings, or changing to a braced-mounting arrangement. When the mountings are set farther

apart, the natural frequencies of the system, particularly for rocking and rotational modes,

should be checked to insure that the relocation of the mountings does not result in unsatis-

factorily high natural frequencies.

1.7. PRECAUTIONS

The following check list of precautions that should be taken in the use of resilient

moi;ntingF is appended for convenience. rhe list includes the principal points already men-

tioned and additional minor items.

1.7.1. INSTALLATION

1. fhe rubber resilient elemenL, of inountings should not be painted.

2. The rubber elements of mountings should be protected from the effects of oil. Where

this is inconvenient, the rubber should be of oil-resistant shock.

3. All welding or flame cutting of structures in way of mounting locations shall be per-

formed prior to the installation of resilient mountings.

4. The installation of mountings and the alignment of mounting surfaces of equipment and

foundations shall be such as to insure that all load-cLrrying mountings with the same rated

load capacity and stiffness have equal deflection under load. Holes for bolts for securing

mountings to foundations and holes in the feet or subbases of equipment shall be aligned to

prevent aoy distortion of the niountings.
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5. Some mountings are designed to be loaded in a specific direction. Care should be taken

to insure that all such mountings are installed so as to be loaded in the correct direction.

6. Mountings used as stabilizers are not to share the dead load of the equipment and

should not be statically deflected after the equipment is installed.* Mountings in a stabilizer

arrangement are not to be confused with braced-mounting arrangements. In the latter arrange-

ment, all mountings share their design portion of the dead load.

7. Bolts designed to be stressed in shear shall be installed in holes with minimum clear-

ance.

8. Bolt material should be as specifiei in the Interim Military Specification MIL-M-17185

(SHIPS) dated 12 May 1952.

9. Sufficient clearances should be provided around equipment installed on mountings to

prevent the equipment from striking ship structure or other fixed or resiliently mounted equip-

ment.

10. No conduit., pipe, or other item should be located in the clearance spaces around re-

silientl mounted eouipment without approval of the mounting engineer.

11. Piping connected to resiliently mounted equipment should have long runs, preferably

two 90-dog bends, and rubber-lined hangers close to the equipment, where neceo3sary, in order

to minimize restraint of the equipment by the piping. Flexible couplings should be installed

in each line close to the mounted machinery, and their effect on natural frequency should be

estimated.

12. Electxic ground straps shall be provided for all resiliently mounted equipment for the

safety of personnel. All cables, flexible connectors, and ground straps shall be so attached

that no pull is exerted on the equipment, and sufficient slack shall be allowed for movement

of the equipment on mountings under shock conditions.

1.7.2. SERVICING OF MOUNTINGS

13. In regard to overhaul, inspection, drift, and replacement of mountings, shipbuilding and

design activities should refer to Bureau of Ships Instructions 9110.4 and 9110.5 for latest in-

formation.

1.7.3. EQUIPMENT

14. The manufacturer .hould determine and furnish the weight, location of the cen'.er of

gravity, moments of inertia about the principal axes, and operating speeds of his equipment.

*Even thogh they carry no titatic load, snubbers, stabtlizers, braces, and fil pipe connections affect the

natural frequencies of a system to Rome degree. All that can be said about their effects is that they tend to raise

the natural frequencies of the syste-n; n.t enough work ha%, been done to evaluate quantitatively the spring con-

stants of these flexible connections. 13y imposing no static load on these devices, their effects ae minimized.



15. The weight of liquid, if any, should be considered in determining the data in 14.

16. Component, of an item of equipment as well as the assembly of a number of units on

a common subbase should he arranged so that the moments of inertia do not differ by a ratio of

more than 5 : 1; r~referably they should be as close to 1 : I a.s i po. ible.

17. Manufacturers and technical sections responsible for procurement of shipboard equip-

ment have joint responsibility in determining in the early design stages whether it is likely

that resilient mountings will be used. If it is decided that there is a possibility that mount-

ings will be used, the equipment designer should give consideration to and provide for several

alternate methods for attaching mountings to equipment.

1.7.4. SELECTION AND APPLICATION OF MOUNTINGS

18. The effect of liquid in the equipment, if any, and the effect of piping and conduit

associated with the equipment should be considered in calculating natural frequencies.

19. For individual units and for subbase assemblies, 16 applies.

20. Resilierit mountings for .3hipboard use must be designed with "captive features."

This is required to prevent the equipment from coining adrift in the event of failure of the

resilient element duo to normal service conditions or to shock.

21. Acoustical shorty across mountings, such as rigid conduit and straps, must be avoided.

22. Resonance of mountings with exciting frequencies of the equipment should be avoided.

23. Mounting, should be fastened to foundatons or stiffeners, not to bulkheads, decks, or

tank plating unless they are sufficiently stiffened.

24. S5ubbases and foundations should be designed to be rigid and yet light in weight.

25. In calculating natural frequencies, allowance should be made for nonrigid foundations

and equipment.

26. Clearances around mountings and around equipment should be determined as described

previou sly.
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CHAPTER 2

INFORMATION REQUIRED FOR CALCULATING NATURAL FREQUENCIES

Before the natural frequencies of a resiliently mounted assembly can be calculated,

certain properties of the equipment and resilient mountings must be known or determined. This

information is also of use in selecting from various suitable mountings the one that best satis-

fies the design requirements for the particular installation.

2.1. PERTINENT PROPERTIES OF EQUIPMENT

Information needed and methods for obtaining dimensions, weight, center of gravity,

rooments and products of inertia, radii of gyration, principal axes of equipment, and speed of

machinory will be presented.

2.! 1. DIMENSIONS

rho profiles and dimernions of equipment in three views are needed to determine space

and clearance requirements. If a subbase is to be used, it.s length and width are needed to

determine possible positionings of resilient mountings; however, the subbase dimensions may

have to be changed later to obtain an assembly with appropriate natural frequencies. The po-

sitions of bolt holes in the supporting legs of the equipment also must be known, either for

locating the mountings or for desigiiing a subbase.

2.1.2. WEIGHT

The wei'ght must be determined for each item of machinery and equipment. The sim-

plest method of weighing is with a platform scale. A crane scale or hook dynamometer, if

available, is often convenient for larger units. Equipment already installed can be weighed

in place with a calibrated hydraulir jack or with a weighing capsule, It must be remembered

that equipment does not always have equal weight distribution among its supporting lege. If

equipment is fastened to a resiliently mounted subbase, then the weight of the subbase must

also be determined and added to the weight of the equipment.

The weight of externally unsupported piping ducts and electrical cables connected to

machinery must be estimated, as it contributes to the total weight supported by resilient mount-

ing.s. On machinery items such as pumps, the jiormal weight of fluid must be included. If

there are partially filled tanks or spaces , a correction l ° may have to be made for the fro-

surface effect. 'This would increase the effective height of the center of gravity of thO liqluid

in the machino,'y, If the free-surface area is small and tle volume and weight of the liquid are

small compared Aith the weight of the machinoiy, the free-surface effect is generally negligible.

Often Lime r ru;ii:,gs must be selected and positioned and a subbase must be (lokigned

bIfore information on the weight can be obtained. In these instances, if drawings, are available,
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the weight can be calculated. t!sually, calculation of the weight of the principal parts plus

an estimate for the minutiae will give a good approximation. When insufficient design details

are furnished, the weight must be estimated. Comparisons may be made with known weights

of similar equipment.

2.1.3. CENTER OF GRAVITY

For each unit of equipment or for an assembly installed on a subbase that is to be

resiliently mounted, the location of the center of gravity must be known in order to detormine

momenLs of inertia and to position resilient mountings.

The center of gravity of equipment may be determined by balancing the unit on a knife

edge or bar three times. hwn the unit is balanced, its center of gravity lies in a vertical

plane through the knife edge. If the unit is rottted about a vertical axis approximately 90 deg

with re.spect to thu knife edge and balanced again, another vertical plane passing through the

center of gravity and the knife edge is established. The two planes intersect in a line through

the center of gr:vity. rhe procedure is repeated with the unit turned on its side, giving a third

plane intur;ecting the line, at the center of gravity of the unit.

It may be difficult or impossible to balance a unit on a knife edge. For instance, if

there i- a thin cn,4 ng in w,4y or tho center of gravity, then a heavy unit may be damaged by

being supported in this way. In this case, the unit nay be supported near one end on a station-

ary knife edge and near the other end on a knife edge supported by a platform sc ilo as in

Figure 10. From the weiight of the unit W, the

weight on the scale le, and tho known distance

betwer-en the knife edges 1, the distance be-

twveen the center of gravity and one knife edge

may he determined.

The moments about A are X

X W

so that, with the length measured in inches, R

the vertical plane through the center of grav.

ty is le l/4 inlies tn the right of A and por- Figure 10 - Determination of Centerof G~ravity L. 'arts of a
pendicular to the paper. This weighing pro- Platform $CL

,. .mu.t be done three times with different
,rientations of the ii nit in order to locate the

eonter of gravity.

If the unit hos n comparatively simple shape and uniform density, the center of gravity

if not obvious h inspection, niav be found hy formulas given in any engineering handbook.

When everal units aro intalled on a resiliently supported subbase, the same mncthods
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may be used to find the center of gravity of the assembly. If the assembly is too large, then

the center of gravity of each unit and of the subbase may be determined separately, and, if

the locations of the units upon the subbase are known, the center of gravity of the assembly

may then be calculated. In the design stage, the use of a subbase permits the arrangement

of the units so that the center of gravity is over the center of the subbase or at least located

with some degree of symmetry. This simplifies the problem of selecting and positioning

resilient mountings. A typical numerical example of the determination of the center of gravity

is worked in Problem I of Appendix 2.

2.1.4. MOMENTS AND PRODUCTS OF INERTIA

hen the weic[ht .nd the location of the center of gravity of a unit are known, the mo-

ment.s and products of inertia may be determined either experimentally or by computation.

For symmetrical bodies of uniform density, the desired quantities can usually be com-

puted from formulas available in engineering handbooks. For irregularly shaped bodies, these

quantities can be estimated by dividing the body up into a large number of small rectangular

parallelepipeds of dimensions Az, Ay, and Az, treating each element as of uniform density,

and applying the basic relations

Ix = ' (y2 + Z2).NM

/Y =(z 2 + Z 2 )Am

Iz = (y2 + x2 ) Am

IX = Yzy Am

I Y= yzrN1

I = IzzAm

When test apparatus is available, it is easier to determine moments of inertia experi-

mentally. The trifilar suspension systemlI, 12, 13 for the determination of moments of inertia

is described in Appendix 3.

If an assembly is so heavy and large that iLt o mments of inertia cannot. easily be deter-

mined oxpe.i nentally, then the moments of inertia of the assembly can be calculated after those

for the indivi Jual units are experimentally determined. The moment of inertia of a rigid body

about any axis may be obtained by determining the moment of inertia of the body about a paral.

Idl axis through the center of gravity and adding to it the product of the mass of the body and

the square of the perpondicular distance between the axes; see Figure 11.
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Figure 11 - Parallel Axes for Determination of Mloment of Inertia

The expression is

/ Z =i z + md 2

whoro is the a moment of inertia about the Z axis through the center of gravity of

the unit or subbase, pound-inch-qeconds squnred,

Izi is the mass moment of inertia about the Z, axis in pound-inch-seconds squared,

m is the mass of the unit or subbase in pound-seconds squared per inch,

d is the perpendicular distance between the Z and Z, axes in inches, and

yis ,386 inches per second squared.

, numerical problem illustrating the calculation of the moments of inertia of an assembly and

one combining center-of.grnvity and moment-of-inertia computations are presented in Appendix

2, Problems 2 and 3.

It is recommended that equipment manufacturers note the roments of inertia on their

mounting installation drawings.

2.1.5. RADII OF GYRATION

Once the moments of inertia about the desired axes are detennined, the radii of gyra-

tion about these axes may be calculated from

2= m or r r or = 19.65 L

23



where I is the mass moment of inertia in pound-inch-seconds souared,

m is the ma.3s in pound-seconds squared per inch.

r is the radius of gNrtion in inches, and

W is the weight of the equipment in pounds.

2.1.6. PRINCIPAL AXES

So far in this chapter the moments and products of inertia of units and assemblies were

determined with respect to three mutually perpendicular axes passing through the center of

gravity. In solid geometric%[ configurations with uniform density, such as cubes and rec-

tangular parallelepipeds, the axes would be parallel to the sides or edges of the object. In

the solution of practical problems dedling with equipment and machinery of varying configura.

tions it is recognized, for example, that the centerline axis of a motor armature is not neces-

sarily congruent with a principal axis of the motor, but it is so close that for all practical

purposos, they can be assumed congruent. The fact that the principal moments of inertia and

the principal axes are not exactly determined for equipment usually results in little error in

calculating natural frequencies.

A relation between moments of inertia about principal axes and about any other set of

rectangular axes through the center of gravity is

V. 4- 1y + /Z  = Ix + Iy f /Z  contant

If the moments of inertia about any set of rectangular axes are represented as vectors from
the center of gravity, they terminate at the surface of an ellipsoid of inertia, see Figure 12.

If x'z is a set of rectangular axes, ,1, :, and C the moments of inertia with respect

to these axes, and D, E, and F the corresponding products of inertia, the moment of inertia

%ith respect to any other axis through 0 will be 1.' 2 where p is the distance along this axis

from 0 to the surface of the ellipsoid whoso equation is

AX 2 + IHy2 + C 2 - 21)?iz - 21'zx - 2Fx'/ = 1

If the axes ate principal axes, the semimajor axes of the ellipsoid have lengths equal to
7, vT1,', and i7, respectively. In Figure 12 the X, Y, and Z axes are the principal

axes of inertia and also the major axes of the ellipsoid. The axes z, y, and z are axes with

arbitrary inclination to the principal axes,

If there is- angulstr displacement of the order of 5 deg between the two sets of axes,

the difference in khe moments of inertia is negligible. l'he less the difference among the three

mnments r)f inerti;, the greater is the angle between the sets of axes that can be tolerated for

r,a ona)ly accurte calculation of ,atur-l frequencie s.

In )racLical aplications, one can usu ally proceed by selecting axes parallel to the

,ides of installations and passing through the center of gravity. This will hel) to reduce cost

and cmplexity of the mounting installation. In units such as electric motors, one principal
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Figure 12 - Ellipsoid of inertia

axis i s very nearly parallel in'd congruent to the centerline of the rotor, and the moments of

inertia about te other two axo.- are very nearly equal. In the assembly of various items on a

common subbase, principal axes parallel to the sides of the subbase caa be approximated by

positioning the units to satisfy the conditions for symmetry; see Chapter 3. When the axes

chosen are not principal axes, the calculation vill also require the evaluation of the products

of inertia [,Y , IY., and lzX.

2.1.7. EXCITING FREQUENCIES (SPEED)

The normal operating speeds of rotating or reciprocating machinery must be known

since machinery can be the generator of excessive noise or vibration. If the speed ranges are

known, remedial steps can be taken to reduce the transmission of noise and vibration by suit,-

able selection and positioning of resilient mountings. The machinery manufacturer can best

furnish this information, and it should be provided on identification plates, in instruction

books, and on machinery and mounting installation drawings.

Not only must the operating speeds of machinery be known but also certain design

feaLures that will contribute to excitations at frequvrncies which are multiples of the machinery

speed (Rleference 6). rhese include the number of poles and slots in motors and generators,

the number of teeth in gears, and the number of balls and rollers in bearings, On the basis

of noise-transmissibility data, it may be possible to select from among otherwise acceptable

mountings the ones more suitable for minimizing the noise transmis.,ion from the machinery

at thoso machinery speeds.
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2.2. PJPERTIES OF IESILIE.IT ZOUITIU1S

The performance characteristics of resilient mountings can be determined by tests

prescribed in the Interim military Specification MIL-M-17185 (SHIPS). As performance data

are obtained from tests on various mountings, reports showing these data will be distributed

to naval shipbuilding activities. Ready reference sheets which s,,mmarize experimental data

considered essential in the selection and application of resilient mountings are reproduced in

Appendix 4.
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CHAPTER 3

CALCULATION OF NATURAL FREQUENCIES OF RESILIENTLY
MOUNTED EQUIPMENT

In this chapter, formulas wi!l be given for calculating the natural frequencies of vibra-

tion of res;iliently mounted equipment. Derivation of the formulas may be found in Appendix 5.

lormulas for some additional cases are presented in Appendixes 5 and 6.

The magnitudes of the natural frequencies depend upon the weight of the equipment,

its radii of gyration about its principal axes of inertia, and the directions of these axes.

'rhese quantities and directions are usually aiready established, and the engineer selecting

and applyine mountings can do little about them. rhe directions of the principal axes are

likely to be the most uncertain quantity, but some error may usually be made in the assumed

directions without affecting materially the calculated frequencies, as has been shown in

Chapter 2. The frequencies also depend upon the number, the elastic stiffnesses, and the

arrangementof the mountings. For the most part, these variables are under the control of the

en gineer.

In considerin_ different mounting arrangements, the followin, general principles may

be of use:

1. I'he number of independent modes of free vibration of a rigid body upon its mountings

is always six. In special cases, two or more of the natural frequencies may be equal.

2. Increasing the stiffness of the mounting arrangement at any point, as by adding another

mounting, generally raises all the frequencies and decreasing the stiffness has the opposite

effect. The only exceptions are those modes in which the mountings with increased stiffness

are not subjected to additional strain due to vibration; in such cases, no change in frequency

occurs.

3. An increase of mass, or an increase of a radius of gyration, generally lowers all fre-

quencies. Decrease of mass or of a radius of gyration has the opposite effect, rho only ex-

coptions are those modes in which an added mass lies at a nodal point and therefore is at

rest during vibration, or for the modes in which there is no rotation about the axis to which the

altered radius of gyration is referred; in such cases, no change in frequency occurs.

The calculation of the six natural frequencies is always possible, but it is laborious

unless the mountings are arranged in a relatively simple manner or unless computing machines

such as the IBMl or UNIV4C are available. First, the necessary simplicity in terms of vibra-

tional symmmetrv will be explained. Then the most useful types of arrangements and the methods

of calculating the natural frequencies will be described, and numerical illustrations will be

presented. Explicit formulas will be given here for certain simple classes of arrangements.

The XYZ axes will always be assumed to be drawn from the center of gravity of the

equip:.ent as the orig-in and in the direction of the principal axes of inertia and the axes of

the i:iountings will he assumed parallel to the coordinate axes unless k a =k, . Damping in the
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mountings will be ignored since its effect upon the frequencies is slight.

3.1. VIBRATIONAL SYMMETRY

As presented in this guide, the calculation of natural frequencies will be based on

mounting arrangement, having at least one plane of symmetry. The greater the number of

planes of symmetry, the easier are 'lie natural frequency calculations.

A plane through the center of gravity of a mounted assembly is a plane of vibrational

symmetry when:

1. Vibrational notions parallel to the plane do not evoke reactions tending to generate

displacements perpendicular to the plane. Such motions may involve translations parallel to

the plane and rotations about an axis through the center of gravity and perpendicular to the

plane. 'hese motions may appear singly or may be combined in each of the vibrational modes.

2. Vibrational motions perpendicular to the plane may involve perpendicular translations
and rotation about an axis lying in the plane. These inotions may appear singly or may be

combined in each of the vibrational modes.

A vibration of Type 1I ha no tendency to cx(ito z) vil)r:tion of I'voo " and vice versn.

Vibrational symmetry is usually accompllished Ps follows:

1. Fach plane of vibrational symmetry niust contain two of the principal axes of inertia

of the equipment or assembly.

2. the mountings must be arranged to provide suitable symmetry in their elastic reaction

to displacement of the equipment or assembly. A simple way to achieve elastic ,,ymmetry is

to arrange the mountings in geometrical symmetry, that is, so that each mounting is matched

by another identical mounting located at the mirror image of the first with respect to the plane

of vibrational symmetry. If a mounting has unequal axial and radial stiffnesses, its axis and

Lne axis of its mate may be either both parallel or both perpendicular to the plane of symmetry.

Geometrical symmetry of thi.s sort .atisfies the requirement for elastic symmetry since forces
and moments associated with vibrational displacements are equal on both sides of a plane of

symmetry. Any mounting that has equal stiffnesses in all directions may have its axis orient-

ed in any' direction. A few relatively simple casies of inclined mountings will be described in

Appendixes 5 and 6.
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Figaure 1.3 - One Plane of Vibrational Symmetry

For at least uie plane of vihrational symmetry to exist, taken as the YZ-plano as in

Figure 13, the conditions of elastic symmetry are as follows:

1. The summation for all mountings of the algebraic product of the stiffness of the mount-

ing in the Y direction and its X coordinate must equal zero and similarly for the stiffnesses

in the Z direction.

Ik X=0; Y. kzX=O

2. rhe summation for all mountings of the stiffness in the Z direction multiplied by the

algebraic product. of the X and Y coordinates must equal zero, and similarly with Y and Z

interchanged:

Yk Z VXY= n; Y k YXZ = 0

If each mounting has equal spring constants k in all directions, then three equations

suffice:

E kX=0, 1 kAi'=O, and XkXZ =0

If k is the same for all mnounting7, the above equations can be simplified further:

X -0, E XY=0, and I XZ =0
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3.2. THREE PLANES OF VIBRATIONAL SYMMETRY

E.quipment that has the simplest vibrational motion and therefore whose natural fre-

quencies are the easiest to calulate, has its mountings arranged so that there are three

mutually perpendicular planes of vibrational symmetry containing the center of gravity of the

mounted assembly. Then three translational modes of vibration occur, each with motion in the

direction of one of the lines of intersection of the planes of symmetry, and three rotational

modes occur with the lines of intersection of the planes of symmetry as the axes of rotation.

If each mounting has the same stiffness in all directions, then the three translational frequen.

cies are equal and i translational mode at this frequency may occur in any direction.

The XYZ axes will be drawn as usual through the center of gravity and along the prin.

cipal axes of inertia of the mounted equipment. The three planes of vibrational symmetry will

thee be the XY, 1'Z, and AZ planes. Any mounting not having equal axial and radial stiff-

nesses is assumed to have its axis oriented parallel to a coordinate axis.

If kX , ky, and kZ are not the same for all mountings, the conditions for elastic symme-

try relative to all three planes are

Y ky. = O, 1 kX Y O, 1 kx Z =0

X kz ,\ =0, 1 kz Y O, 1 ky Z-0

Y 'cz X Y = O, .ky XZ= 0, Y kx YZ = O

If kX has the same value for all mountings and if the same is true of ky and kZ, then

the conditions for elastic symmetry relative to all three planes are

V X'- 0, 1 Y=0, z Z = 0

1 XY = 0, 1, XZ = 0, X YZ .0

For inclined mountings, conditions for three planes of elastic symmetry are stated in

Section A5.4.2. of Appendix 5.

3.2.1. COMMON CENTER-OF-C'AVITY ARRANGEMENTS OF FOUR MOUNTINGS

As a special case, the effective points of attachment of the mountings may lie in a

plane containing the center of gravity of the equipment, forming a "ceiiter-of-gravity arrange-

ment." If the mounting plane contains two of the axes of inertia of the equipment, it is a

plane of vibrational symmetry; the mountings may also be so arrange( I :- the plane that "wo

other planes of symmetry exist, all three planes being mutually perpendicular. Soe Figure 14

for typical arrangements. Such arrangements have been used in mounting many electronic
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Figure 14 - Conmmon Arrangement of Four NMountings with Three Planes
of Vibrational Symmetry

devices and even a few items of heavier equip~ment. A more general type of center-of-gravity

arrangement in which the mounting plane is inclined to two of the principal axes is described

in Section A5.5.

Case (a): k. = k,

rhe simnplest arrangement with three planes of vibrational symmetry is a center-of-

gravity arrangement consisting of four identical mountings having equal axial and radial

stiffnesses k with the effective points of attachment falling at the corners of a rectangle whose

sides have lengths 2D x antd 21) y and whose center is at the center of gravity of the equipment,

Thc sides of the rectangle are parallel to two of the principal axes of inertia, taken as the

X and Y axes. The formulas for the frequency /tr of translational vibration ill any direction

and the frequencies frot,X ,f rot,y , ' nd /,ot, "I of rotational vibrations about the axes indicated

by the subscripts are
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f-± N.. or 6.26T

where N equals the number of niountings, here four, and

=6.26 V ~ f -
6 .26 0)  to, 6.26-

Here, for four identical mountings, 6.26 = %iTg'2ff, W is the weight at the equipment in rounds,

DAI 0 ., and Dz are the absolute values of the coordinates of the point of attachment of a

mounting in inches, and r., F,, and rZare the radii of gyration of the mounted equipment

about the X, Y, and Z axes, respoctively. Itf _,9X= r1, and D X

ft. = A=foY

Cose (b): k. # kr

If the tour mountings have unoqual radial and axial stiffnesses but are identical and

have their axes parallel, the forniulss for the three trani4l4tiunal frequencies of vibration par-

allel to the X, Y, and Z axes and for the three rotational freauencies about these axes fire

_tX 62 ft, , 6.26l/ .6/

fo, =6.26) V ftt } 4i~_ 6.26 (kD 2
+kD )

'rt Xo, 7 rT IkAX kX1
z Y

For most mourntings, one of the three stiffnesses, kX, icy, or k7 is equal to the axial stiff-

ness of the mounting while the other two are equal to its radial stiffness. In the plane of the

directions of the two equal stiffnesses, translational vibration can occur in any direction or

the motions may be elliptical depending on the direction or directions of the initial exciting

forces as well a~s their relative miagnitudes.

Computations in the use of such formulas as those for ft, or frtland /,t, rnsN ho

reduced by the use of a chart, F~igure 15, when four miountings are employed.

[he ap)plicatioJn of the frequency equations is illustrated in Problem 4, Section A2.4.

where four identical mountings are attached in a plane containing the center of gravity of the

equipment. In this problem, procedures are indicated for modifying the frequencies if the

initially assumned positiQns of the mountings result in natural frequencies unsuitable to the
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requirements imposed by environmental conditions for the equipment.

Another illustration of the application of the formulas for equipment having three planes

of vibrational synmetry is Problem 5, Section A2.5. In this problem, kx - k and XZ and

YZ planes of symmetry may pass either through the axes of the mountings or halfway between

them; the same froquencies are obtained with either choice of the planes of symmetry.

3.2.2. OTHER ARRANGEMEATS WITH THREE PLANES OF SYMMETRY

'requency equations will now be presented for more general cases, to be used where

those may provide the most satisfactory solution to the problem of arranging mountings.

Ways of generalizing center-of-gravity arrangements of mountings in the XY plane

starting initially with four parallel mountings at the comers, Dx, D y, of the equipment and

still maintaining the three planes of vibrational symmetry, see Figure 16, are:

1. Any number of additional sets of four mountings, with parallel axes if ka # kr, may be

arranged at i al DA, ± bI DY; ± a2 D X, t b2 Dy; etc, see Figure 16a.

2. Two identical mountings, with parallel axes if k. kr, may be added at X a D X on

the X axis, or at Y= b D .y on the Y axis. Any number of such pairs may be added; see

Figure 1 6b.

3. Any two identical mountings with the same Y, with parallel axes if k. 4 k,, may be

moved equal and opposite distances parallel to the X axis without changing Y; or if they have

the same X, they may be moved equal and opposite distances parallel to the Y axis; see

Figure 16c.

4. Any two identical mountings, with parallel axes if ka + kr, having the same .Y but

equal ana opposite Y may be moved so as to change X to (1/c)X for both provided the elas-

tic constants are changed by a factor of c; and the converse statement holds with X and Y

interchanged. ,or example, if the two mountings are at X = A, Y = B and X = - A, Y = B, re-

spectively, with stiffness k, they may bs moved to X = A, Y = B/c and X - -, Y = B/c with

stiffness ck; see Figure 16d.

5. Any mounting may be replaced by two mountings having equal total stiffness and placed

at suitablk points whose location may be determined from the conditions for symmetry. For

example, if the two have stiffnesses c and (1-c) times the stiffness of the original mounting,

then they may be placed with the same Y and the same orientations of axes as the original but

with coordinates X' for the first and X " for the second mounting where

X'= b X, X"= 1-bc X
1-c

and X is the original coordinate, b is any number, and I > c > 0; see Figure 16o. By such

changes as 4 and 5, it may be possible to adjust the stiffness of each mounting to the load
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it supports. Many other arrangements are possible, but the process of design to secure the

requisite synunetry may be tedious.

Frequency formulas for any number of mountings, identical or different and with equal

or unequal axial and radial stiffnesses arranged in the XY plane drawn through the center of

gravity of the mounted equipment with vibrational symmetry relative to the XZ and YZ planes,

are

'tr, =-3.13 f t roY ff 3.13 1 ky, ftr, Zff 3. 13 1

3.13 1 Xkzot, z xkz 2

rto,.r x Y :1;Z

Aere 3.13 = vg''/2,, and the position of a mounting is at X = t Dx, Y = ± Dy. An illustration

is Problem 6, in Section A2.6., in which the mounungs are not identical.

3.2.2.1. Mltiplone and Other Arrangements with Three
Planes of Symmetry

Multiplane arrangements with three planes of symmetry can be formed by taking two or

more center.of-gravity arrays in the XY plane and translating them parallel to the Z axis so

that they lie in parallel planes at suitable distances from k Y; see Figure 17. Then, of the

conditions for three planes of symmetry, those not containing Z are already satisfied; so are

those containing XZ or YZ since Z has a constant value for each array. There remain to be

satisfied the equations containing Z alone.

If there are just two acrays consisting of N, mountings in a plane at a distance L, from

the X Y plane and V2 mountings in a plane at a distance L 2 from the XY plane and on the oppo-

site side of it, then, provided kx and ky are the same for all mountings, the only restriction

onL and /,2 is that V L I - N2 L2 . If, however, there is variation in kx or inky, then it is

necessary that the ratio Iky/Xkx have the same value for both arrays and that L, (Xkx)I

LI (I-kx) 2, the subscripts indicating the plane to which er.ch sum refers.

More generally, if several center-of-gravity arrays in the XY plane are moved into paral-

lel planes at Z - 1 , Z 2 , .... , respectively, then £ky/>kx must have the same value for all of

them and they must be placed so that

ZI (.kx) I + Z 2 (Ckx) 2 + Z 3(1kX) 3 + 0
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Figure 17 - \lultiplane Arrangement with Three Planes of Symmetry

t'he forriulas for the frequencies are those that hold for any arrangement having three

lplane.s of vibrational syrrinetry and not including inclined mountings. rhese formulas are the

sare as the last set given above, except for these two:

3.13 i/(Zk z
/rot,X -"- cj,]

3.13
'rot, Y' (--I) +Xk9

3.2.3. SUMM ARY FOR THREE PLANES OF SYMMETRY

Trho conditions for three Planes_ of vibrationsi .ymre'y and the frequency equations

for equipment re.siliently mounted are ,summarized by types uf arrangements in Tfable 1. Sep.

arate equations are given for assemblies having mountings wit;, quqi and unequal spring

constants in axial and radial directions. Sketches showing typical arrangementsq (or each set

of equations are given also.

3,3. TWO PLANES OF VIBRATIONAL SYMMETRY

Many arrangeinent of mountings have only two plane.s of vibrational symmetry. Exam-

pies are the base arrangements described in Section 3.3.1. V~hen two planes of symmetry exist,

there occurs a single translational mode of vibration parallel to the line of intersection of the

two perpendicular planes of symmetry and a sintgle rotational mode about this intersection as

an axis . T"he other four modes of motion are, in general, rocking modes, two ir1 each plane of

symmetry. fEach rocking mode, however, is actually a niode of rotation about an axis which
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TABLE 1 - Frequency Equations for Three Planes of Symmetry, Including
Common Four-Mounting Arrangements

Uach mounting eithr bas k a, k? Or a Its axis pariUeI to X. Y. or Z.

M - o~ftinls 
Frequency Equations

Identical Direction 
Codittions

or Arrange- of Mounting of

Differentl sent Mounting Stlffntesses EMtc StIfhms, Four Mountings withA

I Axes Geometrical Symmetry Any Number t
Identical Coplanar Any ka.-k,.k.const. X-IY,,IZ-O

i XYkxaky-kz k ZXY - (z - I YZ,,O ft "t,,z 6.26 1u. 'XtY ft,,

X - 6k2 X kZf" 
.k I

I, x -. -V 1 - 13 '

r-6xlw rx W

W(D.26, 2 ) D?)3.13 -

f't z jwX 011t. 7)E L w
, z. If,  r z , W

All Mountings k ok, IX =-yIY Z . O f,,x . 626 t. y . 2. k ft, X 3.13 N
Parallel to IXY - XZ -X YZ 0 CW YI
Same Axis k.- const.

k, const. z 2 -.i , z -1 3

, Y.. , Z . f- . . - -  . -3.13

IZ V

Ot. z I/ (k DX kXD 2) f'otZ 3 .13
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Frequency Equations
Examples
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- TABLE 1 (continued)

Mountings

Identical Direction Conditions Frequency

or Arrange- of Mounting of

Different ment Mounting Stiffnesses Elastic Stiffness Any Number of Mount
Axes

E ither C oplanar E ach A xis A ny z kY X - .kX Y k Z O 3 , fu- I 3 3

Identical in XY' Parallel to y-3

or Plane X,Y,ofZ Yk ZX"- kZYm lky Z= C
Different Ifk k' YkzXY .kyXZ X k xYZ 0

3.13 1

fla, Ik- Y "
3.13 1

Any Each Axis If mountings are attached !kyX = lkx Y -kXZ O ft., X 3.13 V1 ./, ft,7 Y 3.13
Arrange. Parallel to in twn planes parallel to
ment X, Y, orZ XY plane, ZAzX IkZY - Zkyz-0

if k . k , ( a ) if a l s o X k z X Y -Y k y X Z -X k X Y Z 0 , 3 .1 ( 1

kx - const. and
k - con st.,then
N L, - A2 L 2. 3.13 1 (Ikt

'(b ) O therw ise, ' "Z

must have the same valfe 3131 k/
for both planes and rot Y
also

L I  (Ik)- L2 ('kX) 2

See Sections A5.6 and A6.4 for additional cases.

Principal Axes X, Y,Z Planes of Vibrational Symmetry YZ,XZXY
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Frequency Equations

Examples
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does not pass through the center of gravity of the equipment. Calculation of the natural

frequencies requires the solution of quadratic equations.

The XYZ axes will be drawn as usual from the center of gravity of the equipment along

the principal axes of inertia of the equipment, with the Z axis perpendicular to the plane of

the mountings; and the planes of symmetry %ill be taken to be the XZ and YZ planes. The

single translational mode is thus in the direction of Z. Any mounting not having equal axial

and radial stiffnesses will be assumed to have its axis parallel to a coordinate axis except

when the contrary is stated.

For two planes of vibrational symmetry to exist, the following equations must be satis-

fied:

I kyX=O, 1kzXaO, 1kxY=O, 1kzYW0

.kz XY -O, YkyXZ-O, YkxY Z-O

If each of the constants kX, ky, and kz has the same values for all the mountings as, for

example, for identical mountings with para!!e! axes, these conditions may be simplified to

7X=,O ZY=MO, IXY=O, .XZ-=O, zYZ=O

One way to satisfy the requirements of these equations is to start with mountings in

the XY plane as in the case of center-of-gravity mountings described in Sections 3.2.1 or

3.2.2. If such an array is translated parallel to Z, then Z has the same value for all mount-

ings in the array, so that Z may be taken outside the summations in the equations contain-

ing Z and these equations are also satisfied. Two or more such arrays in Parallel planes

can then be combined if necessary. If the distances between the planes and the spring con-

tants are properly adjusted, the arrangement becomes that of the multiplane center-of-gravity

type; seA Section 3.2.2.1.

Another variation in arrangement permissible without upsetting the vibrational symmetry

is to give equal and opposite displacements, parallel to Z, to any two identical mountings

provided they have the same X and Y but different values of Z, and provided also that they

have parallel axes if k a , ky.

3.3.1. BASE OR BOTTOM ARRANGEMENTS IN A PLANE

Base or bottom arrangements of mountings are used in many of the resilient-mounting

arrangements on shipboard. In such arrangements, the points of attachment of the mountings

lie in a plane parallel to the base of the equipment. Usually the mountings are placed under

the equipment, but the equipment may also be suspended from the overhead or fastened to bulk-

head stiffe,.ers; see Figure 18. A modification sometimes used is a stepped-base arrangement

in which the mountings are in two or more parallel planes, Figure 19, but in this case there
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is only one plane of symmetry and an exact calculation requires the formulas of Section 3.4.

Let the mountings have all their effective points of attachment in a plane parallel to
the XY' plane, and let them be arranged to have vibrational symmetry relative to the XZ and

YZ planes. Let the mounting plane be at a distance DZ from the center of gravity of the
mounted equipment.

(a) Four Identical ,Iountings Symmetrically Placed, With ka = kr

The simplest example of such an arrangement consists of four identical mountings

having equal stiffness in all directions, placed at symmetrically disposed points X = ± DX,
Y = ± D y. The frequencies fi, of the translational mode in the Z directio, and of the rota-

tional mode about the Z axis are

f r=6.26 ot 626 k (Dx 2 +D 2)

Here 6.26 = 2v Y"/2 n.

The frequencies of the four rocking modes may be found with less computational labor

by use of a chart which will be called the Base Mounting Chart;* 14 see Figure 20. For rock.

ina modes in the XZ plane the abscissa represents DX/ry, and for rocking modes in the YZ
plane, it represents Dg . rhe ordinate is V w/r, Aher r stands tor the radius of gyration,
rX or ry, whichever is being used for the abscissa. The origin represents the center of gravi-
ty, while any point an the chart represents the position of one of the four mountings with re-
spect to the X or Y and Z axes in either the XZ or YZ plane. Since the coordinate distances
have been divided by the respective radii of gyration, the chart coordinates are in nondimen-
sional form. Circular arcs are drawn on the chart representing constant values of the ratio of
the maximum frequency fmax to the minimum frequency f..in for the two rocking modes in the
same plane; see Section 1.2. Hyperbolas are also drawn representing constant values of the

ratio fmi./ft, where fmin is always less than fir"

In calculating frequencies, the value of ftr is first obtained from the formula. Then
values of the two ratios fmin/fir and fma,if, are read off the chart, usually by interpola-
tion between curves. The two rocking frequencies are then calculated as fm. and fm.in"

This procedure is followed for each plane of symmetry in turn.
The chart may also bo used by the designer in planning the arrangement. It is helpful

to lay off as a horizontal line on the chart the half-length (1/2) c alf-width (w/2) of the
base of the equipment divided by the appropriate radius of gyration, thus reducing it to non.
dimensional form. This line then indicates the possible positions where a mounting can be
attached to the equipment without extending the base. If the line is drawn at the proper or-
dinate [)Z/r, then the circular arc that is tangent to it represents the minimum value of

*This chart is similar to the upper right quarter of the Isomode Chart devised by Lewis and Unholtz and

issued by the %13 Company.
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fmaX/fmin that can be attained under the given conditions. rhe abscissa of the point of tan-
gency indicates the proper value of Dx or Dy to secure this minimum.

As an alternative to the chart, the formulas for the two rocking modes in the XZ plane

are

TMX2 . -I -- , +.

ft [ 2x+z 2 r/y.Dx:~ 2 2
fm F + D ,7Dz 2  2 /(1 D 2 Z+Dz\2  D 2.in- x+ L,--Z
ftt2 2  L 2 Y2 r 2j

elre D= Xl, D, - Y YI while Dz I Z I is the distance from the center of gravity to the

plane of the mountings. The formulas for the YZ plane are obtained by changing D, to D Y

and ry to rx .

A numerical illustration for four mountings using the Base Mounting Chart is presented

in Problem 7, Section A2.7. This problem, typifying many shipboard installations, is carried

out in considerable detail including calculation of the clearances required around the equipment.

(b) More General Base Arrangements

rhe Base Mounting Chart or the formulas just stated for fmax and f.,. also can be used

for determining the natural frequencies of the rocking modes of vibration for other types of base

arrangements merely by reinterpreting certain symbols. In particular, Dx and Dy will now be

the distances, not to the actual mountings, but to a set of four identical mountings in rectangular

array that would be equivalent to the actual mountings. The general formulas for Dx and 0 y

are

D kCX2. Y kzY2

Assuming that the mountings are arranged in a plane parallel to the XY plane with vibra-

tional symmetry relative to the XZ and YZ planes, the principal cases are as follows:

1. For any number N of identical mountings each having stiffness k in any direction, take,

on the chart or in any formula,

DX  EX Y= Y2Y .,

also

-3.1Jr (X 2 +S y 2)
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Here 3.13 - v/g'2.

2. The base arrangement of four mountings each having its radial and axial stiffnesses

equal may be arranged in two pairs, one pair at X - ± Dx and Y - YI, the other at X - :t Dx

and Y Y2 To preserve the symmetry in the XZ plane, the stiffnesses k1 and k2 of the two

pairs must be such that

k + kk2 I2 0'2
k l + k 2 Y 2 = 0 ° r- =

k2  IY1 l

'lence

k Y1
2 + k 2 Y2

2  k2 1Y2 1 1Y11* k1  l !+'21 Ai 2

ki + k k+k2 1 IY2

and

Also

ft = 3.13 '(k Wk2 f, ot="3 (, + )(X2 + Iy, i y2 )

Here 3.13 = V '/2. An example is treated in Section A2.8, Problem 8.

3. For any number of nonidentical mountings, each having equal stiffnesses in all direc-

tions, the corresponding equations are

DX V DkX2yk y2

- 3.13 ,j o, " 3.13 (1. k 2 + y2)

Wflot I- w X+k y2rz

4. For any number of mountings with unequal axial and radial stiffnesses and each mount-

ing having its axis parallel to a coordinate axis, on the chart or in any formula, DX and DY

must have the values

DX= VI k-Y D.= k.

The equations for the translational and rotational frequencies are
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:3, W (1k +I gk Y2)
ftr = 3.13 W11 kz, fot rz  (yX 2 +

and, for the rocking modes, ftr is to be replaced by fX in calculating frequencies in the XZ

plane, or by f y for modes in the YZ plane, where fX and fy have the values

fx = 3.13 a fy = 3.13Vi

3.3.2. NEARLY COPLANAR ARRANGEMENTS

When the mountings do not all lie in a single plane parallel to a principal plane of iner-

tia, here taken as the XY plane, there may be only one plane of vibrational symmetry, and the

more complicated formulas for this condition of symmetry presented in Section 3.4 should be

used for an accurate calculation. If, however, the departure from a single mounting plane is

rather small and if the conditions for two planes of symmetry are satisfied when the v tria-

tion in the value of Z is ignored, then a sufficiently accurate estimate of the frequencies may

often be obtained by using the chart or the forinuias for the base mounting arrangement with

an average value of Dz. This is illustrated for four noncoplanar identical mountings in

Problem 9 of Section A2.9, and for four nuncoplanar different mountings in Problem 10 of

Section A2.10.

3.3.3. NONCOPLANAR ARRANGEMENTS WITH TWO PLANES OF SYMMETRY

The Base Mounting Chart is not directly applicable to noncoplanar arrangements with
two planes of vibrational symmetry where the mountings lie in more

than one plane perpendicular to these two planes. Exact formulas E ' J
for the frequencies are a. follows, tbe first two being the same as

for the plane base arrangement:

ft, Z _ 3.131I..I.k.Z fot, _ Z (YkUA Xkyx 2 + ykx y2)it, z " .!3 E z , /, r, z rzy2

and for the rocking modes in the XZ plane,

/wax = 3 '13 P + 2 + , LX = ( -Q) + (kZ)+Q2  +LWt

Q Lx X~ I 4Q 2  (Zx)
ax 3.3 2 46



where
kX  1P I Q2  wy2-(YkzX'+XkxZ 2 )

For the rocking modes in the YZ plane,

+mx1 ~11L L p

f=a 3.13 P2 QyL=97 P 2  W(~k

2 + Q L 97

where

P2 Q, (kz y2 + Ik yZ 2 )

11ere 3.13 v7 ,'2 , 9.78 = g/(27)2 .

Equations for certain arrangements of inclined mountings with unequal axial and radial
stiffnesses and with two planes of vibrational symmetry are given in Sections A5.3.2 and A6.3.

3.3.4. SUMMARY FOR TWO PLANES OF SYMMETRY

The conditions for two planes of vibrational symmetry and the frequency equations for
the resiliently mounted equipment are !',,,mazed in Table 2 by types of arrangements. Sketches
showing typical rnounting arrangemeiits for each set of equations are given also.
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TABLE 2.- Frequency Equajons for Two Planes of Vibralional Symmetry
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TABLE~ 2 (continued)
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TABLE 2 (continued)
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3.4. ONE PLANE OF VIBRATIONAL SYMMETRY

Mounting arrangements with one plane of vibrational symmetry are usually braced

arrangements where the base mountings are supplemented by upper lateral mountings. Such

arrangements are particularly suited to equipment whose height is large compared with its

base dimensions and which ip "laced so that lateral mountings may be attached to an adja-

cent bulkhead; see Figure z1. These arrangements have been used for installations of many

electronic and electrical devices and even for a few items of heavy equipment.

Y /

z z

Y

Figure 21 - Common Arrangements of Mountings for Equipment with One
Plane of Vibrational Symmetry (the YZ Plane)

As usual, the XYZ axes pass through the center of gravity of the equipment along the

principal axes of inertia, and any mounting with unequal axial and radial stiffnesses has its

axis parallel to one of the coordinate axes. The single plane of vibrational symmetry is taken

as the YZ plane. The general conditions for elastic symmetry are
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YkyX = 0 IkzX 0 0, YkzXY = u, £ YkXZ 0

If every mounting has the same value of ky and kz, then

f0, ;XY= O, YXZ =0

Special arrangements satisfying these equations are easily designed; see Figure 22.

The simplest methods are the following:

1. Single mountings can be added anywhere in the YZ plane; see Figure 22a.

2. A pair of identical mountings, with parallel axes when k. 9 k,, -can be placed at any

pair of points having the same Y and Z but having equal and opposite X. Any number of such

pairs can be added; see Figure 22b.

3. Equal and opposite translational shifting of any magnitude parallel to the Y axis can

be given o any two mountings having the same value of kzX, or equal and opposite shifting

parallel to Z if they have the same ve.lue of kyX; see Figure 22c.

4. The elastic constants of any mounting can be changed by a factor of c provided its

coordinate X is simultaneously changed by the factor 1/c, without change of Y or Z or of the

orientation of its axis; see Figure 22d.
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Added 

Z z -

I, Added

T4

Y

Figure 22a -Addition of Single Mountings 1zFigure 22b - Addition of a Pair of Mountings

la a

Figure 22c -Translat ion of a Pair of Mountings

z

z
k2k x

k/ k

V1- kl

Figure~ 22d - Change of Elastic Constant FigurP 220 - Replacement of One
of a Mount ing by a Pelt of Mountings

Figure 22 - Other Arrangements of kMountings for Equipment with One
Plane of Vibrational Symmetry (the YZ Platne)
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5. Finally, any mounting can be replaced by two or more mountings of equal total stiff-

ness suitably located. For example, if the two have stiffnosses c and (1-c) times those of

the original, then they may be replaced at the same X but at (Y', Z'), (Y", Z"), respectively,

where

Y'= aY, Z'= bZ, y, 1-ac Y, Z"= 1-bc
1 -C 1 -c

Here X, Y, Z is the original position, a and b are any numbers, and 1 > c > 0.

Many further modifications of the arrangement are possible, but it is more tedious to

insure that the conditions for symmetry are satisfied.

When vibrational symmetry exists relative to the YZ plane, vibration in this plane is

independent of vibration perpendicular to the plane. The motion in the plane can be resolved

into translational vibration parallel to the plane and rotational vibration about a perpendicular

axis containing the center of gravity of the equipment. Vibrational motion perpendicular to

the plane may be resolved into translation and rotation about an axis lying in the plane of

symmetry.

Calculation of the six frequencies f requires the solution of the two following cubic

equations in f2:

For motion in the YZ plane,

f6 - 1B1 /4 + C 1 f2 - D1 = 0

where

BI = P2 + P3 + q,

C,= p2 p3 +p 2 q, +p.q 1 - 95.6 [(.kzy)2 +(y
; V 2  r 2k y ) 2

D1 = P2 P3 q1 - 95.6 [P2 (kzy)2 + p3 ( kyZ) 2 ]
W2 r X2

and where P2 1 P3 and q, are three of the six quantities

P, -9.78 Zkx 2 =9,78W y, p3  X Xkz

l 9.78 (Xkzy 2 ,XkZ 2 ), q2 - 9.7 (PkzX 2 +kxZZ)

q3  .78 (lkyX2 + vk Y 2 )
Wr~
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For motion perpendicular to YZ, including rotation about an axis lying in YZ,

f6 - B2f4 + C 2 f2 - D2 = 0

where

B2 = p, + q2 + q 3

c pq pq qq 95-6 r- (YkXY) 2 + _-L (YkXZ) 2 + 1 (Y.kX yZ)21
2 =pq 2  q 2 q3  W2 -p z. r 2 r-Y- 2

p pq 2 q3  9 5.8 [ .4L (YkXZ) 2 + I& (1k, Z) 2 + ... 1L (1kx YZ)21

+ 1870 (YkxY) (YkXZ) (YkxyZ)
W3rY2 ,2

liere 9.78 = g/(2t) 2 , 95.6 = g2/(2f) 4, 1870 = 2g 3 / (27) 6.

If the mountings have equal radial and axial stiffnesses, then kX -k kZ - k, a single con-

stant for each mounting; if all the mountings are identical, (XkXy) 2 .Cx2 (Zy) 2 , etc.

The p's and q's serve as a basis for the quantitative consideration of the frequencies.

Let fl, f2, f3 denote the frequencies for motions parallel to YZ. Then

f12 + f2
2 +f32 p2 + p 3 + q,

(f12 - f2
2)2 + (f, 2 f3

2 )2 + (f 2
2 - f 3

2)2  (P 2 -P 3 ) 2 + (P 2 -ql) 2 + (P3 -ql )2

+ 6 x 95.6 [(1kzY)2 + (ykZ)2]

wtx 2

From the last equation, f, f 2 - f 3 only if P2 - P3 - q, and also VkZY = XkYZ - 0.

If the latter sums do not vanish, their effect is to spread the roots further apart. Thus,

if it is desired to bring the frequencies closer together, the differences between P2 , P3, and

q, and the sums just mentioned should be decreased. More precisely, if £kz Y - Xky Z - 0,

then f12 = P2' /2
2 _ p3, f3

2 - q,. Otherwise the square of the lowest of the three frequencies

f If2' f3 cannot exceed the least of p2 , p3 , and q, and will in general be less, whereas the

square of the highest frequency usually exceeds the greatest of P2 1 P3 1 and q,, and at least

cannot be less.

54



b___ - - For Expanded Section - 1

0,03 0.033 0.035 003?

0 001 002 003 004 005 0.06 0.07 009 009 0.14.1 0.11 Cut2 0.13 014 0's ale
1.00

030 -------- 0-32 -------

Goo5 ---- to

03004 OCI

0.60 -- - ---- -

0104

04090

00081 02 55 03 L3

0 aC B12o C281...

0 50 --- ---- ---- ---- -- -----

..9 0 00 00 ........ ...3 00 ... 0.07 00 09 00 01 02 01 .i .

Fiur-3--r-fo-he-luio----- u-----on ppicbe oCae
...v o ..v ...g .. .. .. .... P l... .... ..... ~ S .r m

Th euaiosar gve n ags 3an 5..h..lu......h.na.t..o~ rett ie
pertinig t thecure w ose ppe orrigh-had trnin pont......ret..belo.th.....r



90762 922 0-00 001

O.09 0.10 oil 012 al Q.A Gill Q16 0.11 0.1 0.19 020o 0.2' 0.22 0.23 0.24 028 026 0.27 0

70

60-

- 0.40
0330 0.335

- - -0.002. ..

.~~~ .. .4 ..

--------- . .............

-- VI.. -... 0.00
1 1 1 : 1 1 1 1 1 1 1

09 010 0.11 0.12 0.11 0.14 0.15 016 0.1? of$ 019 0-20 02' 0.22 02b 0.24 0.28 0.26 0.2?

b SOf -
.32 8

Albe to Cags

top we the values

elow the numlber.

S---. - -- =--~--~=~-04.



000 0.04 002 0 1 1f.cp
II 

I c

!4 0.25 026 0.27 028 019 0.0 3 0.32 0a .00 300 a x 10

200 4K i C4

%X00

0.70 60o 14

050 4 4 L6Stt61i

45Q 0.4 849

0.02L4 
*o

60

0
0.10

.0 .00

0.00 3. . . . . ..
0.00.0

. ~ 0.002
0.0

b 0.002 

,

3.1' 025 0.26 0L27 0.28 0.29 0.30 0.31 B-01 0.) .3



In the case of vibration invuiving at least some motion perpendicular to YZ, three sums

are involved:

ZkxY, T-AxZ, ZkXYZ

To make the three frequencies equal, it is necessary that all three of these suims vanish and

also that p, = q2 = q3 " If all three sums vanish, tnen the three frequencies f4,fs,f6 have

the values

f42 = Pi' fs2  q 2 , /6 2 q3

In any case

f42 + fs2 + f/ 2p I + q2 + q3

V4f2.- f5
2) 2+ (f 2 -. f62) 2 +.(f 5 2 -f 6 2) 2 - (p - q2 ) 2 +(q, -q 3)2 + (P1 -q3 )2

.6x95.6 1L (Y.kx y) 2 + i. (XZ) 2 + 1 (kXyZ)21

W2  Lrz2  r 2  rJr

A chart, Figure 23, has been prepared to reduce the numerical work in calculating

natural frequencies of equipment. First, the coefficients Bi, C1 , D and B2, C2 , D2 of the

two cubic equations in f 2 are evaluated. Then the ratios a - C 1 /8 2 or C 2 /B2 , and

b- DB 1 3 or 0 2 /B 2
3 are calculated. The abscissa of the families of curves in Figure 23 is

a = CI1/B 1
2 or C2 /B22 while the ordinate is 1/ /Bl or f/V/'- 2 depending upon whether the roots

of the cubic equation are being determined for motion in plane YZ or perpendicular to plane

XZ, respectively. Curves representing discrete values of b - DI1/B 13 or D2/B23 are plotted;

to assist in identifying these curves, values of b at the upper or right-hand turning points of

the curves are shown on scales above the plot. If the ordinates f/vr7 aie read for the three

intersections of the calctilated value of a - C/B 2 with the appropriate curve 6 - D/B3, these

ordinates multiplied by \f give three of the frequencies. The multiplication may be avoided

by use of the alignment chart shown at the right, in Figure 23.

A typical numerical example for calculating natural frequencies of resiliently mounted

equipment with one plane of vibrational symmetry is Problem 11 in Section A2.11.

3.4.1. SUMMARY FOR ONE PLANE OF SYIAMETRY

The conditions for one plane of vibrational symmetry and the frequency equations for

resiliently mountec equipment are summarized in Table 3. Sketches showing typical applicable

arrangements for each set of equations are given also.



TABLE 8 - Frequency Equations for One Plane of Vibrational Symmetry

Mountings_ • . .

Direction Conditions
Identical of Mounting C of Frequency Equations

or mounting Stiffoesses Elastic Synmetry
Different Axes

IdenticBl Any kmulek .X- U. 0 Any Number of Mountinp

k, - conat. Motion Parallel to YZ Plane

BI -P2 " P3 91

95.6
Each Axis ka # kt Ik r" .ZkZXk .Y -Zk .XZ -0 lfa"2 "39--;;:-- rI.Zk Y lk-Parsllel to"° -
One of
A .7, D '

Different Any ko - k, -k XkX *,XkXY - ,kXZ * 0 Translation .L to YZ Plane or Rotmtion About an Axis in YZ Plane

B2 - P1 + 92 + 93

C2 -P1 52 +P1 3 .+ 2 3  kxY) ..L(kxZ)2

EachAxi k.0 k 1kX -IkZ -YZXY- IyXZ- 0 D2 -P11 2 q13 9.6L2.(XkXy?) L 4 (SikXZ) 2 +_.L_(XkXy
parallel to + t 2 -. 2 L 2
One of Y
X, V. Z where

1 . .k 78,. y p3 J , ,k . k )Z

-(IkzY, + %Z 2 i2 !ikZX2+UXZ2, q

Then for obtaining frequencies from the chart, Figure 2).

Three frequencies - YZ Plane

a-L, b D , B-Bi
B 2  B 3

See Sections AS.4, AS.7, and AG.2 for additional cases.

Principal Axes X, Y, Z Plane of Vibrational Symmetry YZ
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,,'metey

Frequency Equations Examples

Ia Any Number of Mountings k's identical and

Parallel to YZ Plane k.- A:

P3  q1
z

95.6
3 ' 2 q1 ' P3q1 -- (YCZy)2 +(1k)V 21

01- 95-6 Lv2 (1kCZY? + P3(IkyZ) 2]

.. to YZ Plane or Rotation About an Axis in YZ Plane x

2 -q3

95.6 -L (jkXj)2 + I (IkXZ) +. Ykx yZ,)2

t" L2 2 29 t? Z2 
2 k's different but YA. k,

, 2 (ZXY +3 L Xk P1

It. &9.7+kXy ) 8 1 'k ( Y kyZ) (Y,, - -'- "YZ)W2. 9..8.z 2X , W ?Y2 ,

z

lkxy, p2 - 1ky P397 LYkw Z

I. Y

(lz IyZ 2 ), _L7 .7 (I kzX+kZ q 3 ~.~k(+k~y2)k
Wr .. k.,

Iptaining frequencies from the chart, Figure 2 L x
I

Pieqencies - YZ Plane Three frequencies ...L to YZ Plane k k2 k2

D C

-. B 2 B 1 382 2 8



APPENDIX 1

TRANSMISSIBILITY AND ISOLATION THEORY .... ,

In the case of a mass attached to a spring, whether a sinusoidal force acts directly on.

the mass or a sinusoidal motion is impressed on the support the amplitude of the mass will vary

with the frequency. 15, 16 This physical principle is utilized in isolating machinery or equip-

ment from motions of a support or in isolating the support from motions or forces generated by

the machinery. Isolation is attained by making the natural frequency of the mass-spring system

such that the response of either the equipment or the support is sufficiently small to be satis-

factory for the particular installation.

If the mass is considered concentrated at a point, and the supporting spring is almost

weightless, and if the mass is constrained to move in one direction only, then the system has

one degree of freedom. Its behavior can be approximated by analysis based on simple vibra-

tion theory, even for nonlinear springs such as resilient mountings if their displacements are

small.

A1.1. EXCITATION BY AN IMPRESSED FORCE

From Newton's second law, the acceleration of a given particle is proportional to the

force applied to it and acts in the direction of the force. This may be expressed as F . ma,

or for more than one force, F = ma or IF - ma - 0. First let a sinusoidal force be impress-

ed on the mass of a one.degi'ee-of-freedom system. Then the forces on the mass are: the

sinusoidal force Po sin co t, a damping force proportional to the velocity of the mass ci, and

the restoring force of the spring proportional to the displacement of the mass relative to the

support kz-, see Figure 24.

Support / I

Damping Spring

Driving
(Mass) Force

P sinet

Figure 24 Free-Body Diagram, One-Degree-of.Freedom System
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rherefore, by Newton's second law, the equation of motion is

m" = - ci - kx + Po sin cot

or

mi + cx + kx - P0 sin cot = 0

The solution of this equation for steady vibrations with transient terms omitted is

P sin (wt-o)
X' m Y ( a n' - w + ( _ ._ _m (co2 - co2)2  (2c)

where 6 tan- 2 nc

n 2 Q)2

n C
2m'

CO= , %F'- is the natiral frequency in radians per second, and

w. iz the exciting froquency in radians per second.

the equation can be written

X1 =.4 sin (cot-C)

where

PA= 0

r 2  C 2 )2 4 n 2  w 2
2l ). 42 -

on cun

The amplitude can also be expressed in terms of the static deflection x., that would be pro.

duced by a steady force of magnitude Po applied to the mass

PO PO
S~t =~ m=o-2k M cu

The amplitude becomes

I

2/ 2 4' n2 Oj 2

2  46j n 2  c n4
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Figure 25 - Curves of Magnification Factors Figure 26 - Curves of Phase Angle versus
versus Frequency Ratios in Steady-State Frequency Ratios in Steady-State

Vibration of a System of Vibration of a System oi
One Degree of Freedom One Degree of Freedom

The quantity

(±i2 4,2 2
n

is called the magnification factor. This factor times the static deflection gives the maximum

displacement of the mass. Normally the term 4n2 C 2 / o 4 is much less than unity. As the

ratio o/Con approaches 1, the magnification factor for zero damping becomes infinite. In

practical cases, damping usually reduces the factor to 10 or less at resonance. If the ratio

o,/Cln is much less than 1, the factor approaches 1; if the ratio Co/Con is much greater than 1,

the factor approaches zero; see Figure 25.

Since the force on the mass is P0 sin ot and the displacement of the mass is A sin

(t-0), ( is the phase angle between the force and the displacement. In another form,

2 c o
c Co

tan 95 n

n2

where cc is the value of c that produces critical damping and has the value c c = 2mco. = '2k/o.

Critical damping is the damping just sufficient to cause the system to return tW its rest position

without oscillation offer an initial displacement. The argle 6 is small for small values of

Co/w., and the force P sin ,t leads the displacement X by a small amouyit. For values of
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W/Coin greater than 1, € approaches 180 dog, and the displacement is almost completely out of

phase with the exciting force; see Figure '26.

The transmissibility T is commonly defined as the ratio of the force transmitted to

the support to that imposed on the mass. The transmitted force is

C'0 +k 0 [ksin(w t- ) + cca cos (W t--)]
m 2 _ 2 cu 2 )2 + (2nco) 2

or

P 2+ CU sin (cot + ')

m j(un2-co2)2 + (2nw) 2

where 6" is a new phase angle. Hence by definition

6 = 
2 + C2co2  

-1 2~cT =

17 (0 2 -_co 2 ) 2 + (2 r, W)2  2 ~2 C j 2

Since k/n = co2 when, the damping factor c/c c is small, the equation reduces, except for

very large co, to T = 1/(1 -co2/n 2 ). When con becomes small, the transmissibility approaches

zero and as con becomes large, the transmissibility approaches 1.

A1.2. EXCITATION BY MOTION OF SUPPORT

For application to shock excitation, it is useful to consider also the case in which

there is no impressed force on the vibrating mass, but the support is given a sinusoidal mo-

tion. Let the displacement Xb of the support be

X = bsin(,ot

The equation of motion for the mass is then

m z c(* - Xb) + ( - Xb) = 0

The solution for the steady-state vibration is

x= b k - sin t-tan- Cco -tan- 1

m /(o~n2-W2)2 + (2n,) 2  L-ro 2

This equation is the same as for the previous case except that P0 is replacou by b Vk 2
+ c2

and a phase angle is added to co t - 6.

The ratio of the amplitude of vibrrtion of the mass to the amplituae ot vibration b of

the support is thus
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k/ 2 + e2 6.2

n,7/(62,_2)2 +

lence the transmissibility T can also be defined as the ratio of the amplitude of vibration of

the mass to the amplitude of vibration cf the support when the motion of the mass is excited

by motion of the support and not by an impressed force. The ratio of the velocities and the

ratio of the accelerations are also equal to T.
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APPENDIX 2

NUMERICAL EXAMPLES

Typical numerical examples illustrating the determination of centers of gravity, moments

of inertia, and natural frequencies of resiliently mounted equipment with various symmetrical

arrangements of mountings are presented in this Appendix.

A2.1. PROBLEM 1 - CENTER OF GRAVITY

Assume that the centers of gravity of the subbase A and of the individual units B and

C, Figure 27, are at their respective centers. Determine the center of gravitv of the assembly.

10", C

The weights are:

, - Subbase A 150 lb

6"0f Unit B 90 lb
Unit C 150 lb611/ i A

Total Weight - I W - 390 lb

Figure 27 - Problem 1 - Determination of Center of Gravity of
Assembly of Two Units and a Subbase

'fake as the moment about the z axis the weight of the individual unit in pounds timeF

the y coordinate of its center of gravity in inches.

z
20"

-0- 10"I

X A y L-

150 lb Subbaso A 150 x 10 . 1500

Unit B 90 x 4 - 360

Unit C 150 x 15 -2250

C Il'y - 4110 in.olb

15 I0 1b

fill
| .. . . ....b



Dividing the total moment 1-Wy by the weight XW, the distance - from the z axis to the

center of gravity is determined.

5 4110 - 10.5 in.
Y-4 390

Take as the moment about the y axis the weight of the individual unit in pounds times

the z coordinate of its center of gravity in inches.

-, Subbase A 150 x ".5 = 115
P 1501b UnitB 90 x 3 = 270

Unit C 150 x 11 = 1650

6!Wx = 3045 in. lb

BI-CIWx=34 = 7.8 in.=
- - IV 390

4z;--f- 150 --- b
90b I

Take as the moment about the z axis the weight of the individual unit in pounds times

the z coordinate of iW, center of gravity in inches.

~Wxa

5" BSubbase A 150 x 1 - 150

90 lb UnitB 90x5 - 450

Unit C 150 x 6' 900

1'*I I ~z - 1500 in. lb

150 lb
A C ).Wa 1500 = 3.8 in. m

6" -H' 390

150 Ib
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The center of gravity of the assembly is

7.8 in. back of the front edge of the subbase,

10.5 in. to the right of the left edge of the subbase, and

3.8 in. up from the bottom edge of the subbase,

that is, the coordinates of the center of gravity with respect to the references axes are

x = 7.8 in., y= 10.5 in., z = 3.8 in.

A2.2. PROBLEM 2- MOMENT OF INERTIA

Assume the same unit- of equipment, B and C, and subbase as in Problem 1, see

Figure 27. Determine the moments of inertia abiut axes in the x, y, and z directions through

the center of gravity of the assembly.

In Problem 1, the location of the center of gravity of the assembly was calculated as

7.8 in. back of the front edge of the subbase,

10.5 in. to the right of the left edge of the subbase, and

3.8 in. up from the bottom of the subbase.

Assume the moments of inertia of the individual units about axes through their centers

of gravity in the x, y, and z directions to be

1, lb in. sec2  Unit A Unit B Unit C

13.08 1.94 5.31
y 7.42 1.40 4.15

/ Z  20.24 1.94 5.31

Now that the moments of inertia of the individual units about axes through their cen-

ters of gravity are known, the transformation formula, for example, /. = IX, c.g. 4 m 4 2 for axes

parallel to the X axis, may be used to determine moments of inertia about parallel axes through

the center of gravity of the assembly. The formula shows that the moment of inertia about any

axis is equal to the moment of inertia about a parallel axis through the center of gravity of the

unit plus the mass of the unit miultiplied by the square of the distance between the axes.

Before the transformation formula can be used, the squares of these distances must be

calculated. But first the distances of the center of gravity o ,iach unit in the z, y, and z

directions fromr the center of gravity of the assembly must be determined; they are

Direction Unit A Unit B Unit C

X 0.3 in. 4.8 In. 3.2 in,

Y 0.5 111. 6.5 In. 4.5 in,
a 2, Q in. 1.2 in. 2.? in,



The squares of the distances between the axes of the units and those of the assembly and

the moments of inertia of the assembly may now be calculated.*

Axes Unit A Unit B Unit C
Parallel to

(i0.5)2 + (2.8)2) 2  (( .)2 + (6.5)2)2 (4.5)2 . (2.2)2)2

= P.09 in.2  =43.69 in.2  -25.09 in. 2

(0.3)2 (2.8)2)2 (V(1.2)2 + (4.8)2)2 (Vf3.2)2 (22)2)2

= 7.93 24.48 = 15.08

2 2
(0.37, (0.5)2) 2  (1 6.5) + (4.8)2) 2  (v45) (3.2,) 2

- 0.34 I -65.29 j 30.49

About Unit A Unit .1 Unit C Total

I =I + Md 2

x x, c.g.

x Axis = 13.08 + - x 8.09 = 1.94 + -- x 43.69 = 5.3 1 + 15--x 25.09 = 43.41

386 386 386

- 13.08 + 3.14 = 1.943 + 10.19 = 5.31 + 9.75 call

-16.22 lb in. sec 2  = 12.13 lb in. sec 2  = 15.06 lb in. sec 2  43.4 lb in. sec 2

i _=ly.,,. + md 2

yAxis = 7.42 + x 7.93 =1.40 + 24.48 =-4.15 + 1x15.08 =27.62

386 386 386

- 7.42 + 3.08 = 1.40 + 5.71 = 4.15 + 5.86 call

= 10.50 lb in. sec 2  - 7.11 lb in. sec 2  = 10.01 lb in. sec 2  27.6 lb in. sec 2

!, = I, ..+ Md
2

Axis = 20.24 + 15 x 0.34 = 1.94 + O x 65.2 = 5.31 + L- x 30.49 =54.70
386 386 I 386

S20.24 + 0.13 = 1.94 + 15.23 5.31 + 11.85 call

u 20.37 lb in. sec 2  . 17.17 lb in. sec 2  = 17. IF lb in. sec 2  54.7 lb in. sec 2

*No ,uttempt was made to irnsnge units on the eubbase so that the x, y, s axes would be principal aen. In

ptctice, the units should be arranged so that the center of gravity in clos.e to the geometrical center of the

assembly ant the principal axes are paraillel to the sides of the assembly.
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A2.3. PROBLEM 3 - COMBINATION OF PROBLEMS 1 AND 2
By Rearrangement of Operations, the Centers of Gravity and Moments of Inertia

are Worked Together, Reducing the Computations

Unit III x m mz 2  3, my my 2  z mz mZ 2  !, I

A 150 0.389 7.5 2.92 21.90 10.0 3.89 38.90 1.0 0.39 0.39 13.08 7.42 20.24

B 90 0.233 3.0 0.70 2.10 4.0 0.93 3.73 5.0 1.17 5.83 1.94 1.40 1.94

C 150 0.389 11.0 4.28 47.07 15.0 5.84 87.53 6.0 2.33 14.00 5.3). 4.15 5.31

0 1.011 7.90 71.07 10.6 130.2 3.89 20.22 20.33 12.97 27.49

.x _ 7.90=
x .9 7.80 in.; i 2 -60.8

- m 1.011
mY 10.66 = 10.51 in.; 2 - 111.1

- n, 1.011

1_m E 3.89= 3.85 in.; 2 14.8
Xm 1.011

I / lXI, c.g.+ m Y2 + XmZ2 
- X m(y 2 + Z2 )

= 20.33 + 130.2 + 20.22 - 1.011 (111.1 + 14.8) = 43.6 lb-in.-sec 2

1y = I lY, c.g+ Im z 2 + 1m Z2 _ Im (X2 + Z2)

- 12.97 + 71.07 + 20.22 - 1,011 (60.8 + 14.8) = 27.8 lb-in.-ec2

/z 121c.g.+ ,mX 2 +gray M(;2+!y2)

-- 27.49 + 71.07 + 130.2 - 1.011 (60.8 4 111.1) - 55.2 lb-in.-ec 2

A2.4. PROBLEM 4 - CENTER-OF-GRAVITY MOUNTING ARRANGEMENT
THREE PLANES OF VIBRATIONAL SYMMETRY

FOUR COPLANAR IDENTICAL MOUNTINGS

Tho ,nit iN a solid homogeneous rectangular body and weight 4000 Ib; mee Figure 28.
The (nLor of gravity is at the geometrical center of the unit. 'rho X, Y, and Z axes coinoide
wiilh Uo principal axo, , f inertia. Tho dinbunmions, moments of inortia, radii of gyration, and

(17



initial locations of the resilient mounts are

I=50 in. Ix = 1230 lb-in..sec 2  ?x = 10.9 in. Dx = 23 in.

w = 32 in. ly= '2500 lb-in.-sec 2  ty = 15.5 in. DY= 19 in.

h = 20 in. I z= 3040 lb-in.-sec 2  rZ = 17.1 in. DZ = 0 in.

Four 1000-lb mountings are attached to brackets of the unit in a horizontal plane con-

taining the center of gravity of the unit.

Using the value of the rated frequency of the mounting obtained from the standard re-

port forin, here taken to be 15 cps for the supported load of 1000 Ib, the dynamic stiffness of

a single 1000-lb mounting may be determined from the formula

k =(2~n WI = ~100152 =L9 - =23,000 lb/in.
g 9.8 9.8

The translational and rotational natural frequencies of the equipment supported by

these tour mountings are

f= 6.26 L= 6. 26 2~90-15 c p
R, V4,00

-l t 6.2 000 .' 9 ~ / ? O 26.1 cps
ro, x WL _ t -.9  4,000

YZ Plane Z

Z~~ -g 1~4 19 "1
-Y

w 32" h-20

Y

XZ Plane I
Zy 23" -.

xb_

l'igilro 28 -Problem 4 Thron Planoi4 or Vibrational Syimirnotry



6.26_' R6.26 x 23 V3,000 22.3 cpsfr ryv it I.5 4,0

, 6 6.26 " ,000[(23)',(19)21 26.1 cps

77V A 174.1 4-,000

The fy0t, X and fot, Z natural frequencies are the same solely by coincidence.

If the maximum deflection across the mounting under shock is assumed to be 1 in. either

side of an equilibrium position, the clearance around the equipment should be 1 in.; see

Section 1.6.

If the mountings can be positioned closer in the X and Y directions, reducing Dx and

Dy, the rotational frequencies 4 otX and 40t, y are reduced proportionally, while ft. remains

the same. If the translational frequency is not satisfactory with respect to noise transmission

and a lower natural frequency is desired in this mode, other mountings with rated frequencies

lower than 15 cps must be selected. In this problem the D)y distance, and therefore fret, X,

cannot. ne rediced with a solid body. Jowever DX, and therefore fet, Y and to a lesser extent

/rot, Z) can be reduced. If the enuipment were not solid and the components could be redistrib-
uted, an increase in rx, a smaller increase in rz, and a decrease in Dx would reduce all the

rotational frequencies.

Another illustration of the application of the formulas for equipment having three planes

of vibrational symmetry, Problem 5, is also presented in this appendix. In this problem moments

of inertia about any axis in the XY plane through the center of gravity are the same. The ques-

tion here is the location of the XZ and YZ planes of symmetry. If the planes are taken at 45

deg to the mountings, the formulas for four mountings previously presented may be used. If

these planes of symmetry are taken through the mountings, then the coefficient of the equa-

tions becomes 4.43 rather than 6.26 because two mountings instead of four are acting with

respect to either the XZ or YZ plane of vibrational symmetry. The natural frequencies obtain-

ed by calculation are the same for either procedure. Still another illustration of a problem with

mountings arranged with three planes of vibrational symmetry is Problem 6, also in this

appendix.

A7.5. PROBLEM 5 - CENTER-OF-GRAVITY MOUNTING ARRANGEMENT
THREE PLANES OF VIBRATIONAL SYMMETRY

FOUR COPLANAR IDENTICAL MOUNTINGS

Tho unit is a cylindrical body and weighs 5000 lb; see Figure 29. The center of gravi-

ty is on the axis of the cylinder, 26 in. from its bottom, The X,Y, and Z axes coincide with

the princi pal axes of inertia of the body. In this instance the moment of inertia about any axis

19



through the center of gravity in the XY plane is the same. The dimensions, moments of inertia,

and radii of gyration of the body and initial locations of the resilient mountings are

I = 48 in. IX = 8.76 x 103 lb-in.-sec 2  r) - 26.0 in. Dx = 19.8 in.

v = 48 in. Iy = 8.76 x 103 lb-in.-sec 2  Fy = 26.0 in. Dy = 19.8 in.

h = 72 in. / Z = 3.72 x 103 lb-in..sec 2  rZ = 17.0 in. DZ = 0 in.

Four 1200-lb mountings are attached to brackets of the unit in a horizontal plane con-

taining the center of gravity of the unit. The dynamic stiffness of one 1200-lb mounting may

be determined by the formula

k = (2, f)2  W . /2
g 9.8

in which the value of the natural frequency obtained from the standard report form, and here

assumed to be 15 cps for the 1250-lb load to be supported, is used.

Wf2 1250 (15)'
- -- 5 - 1 28,700 lb/in.

9.8 9.8

V he translational and rotational natural frequencies of the equipment supported by the

four mountings are

- 6.26 62-.=.6 I/2 = 15 cps
W 5000

6.20 Dy 6.26 x 9.8 /228700 =11.4 cpsfro t,, A rX 26.0 5000

6.26D y j/§ 6.26 x 19.8 81700- 11.4 cps
rot,-y W 26.0 5000

X- +, D 2
frt~ ;2 (L) X22 )~ L6 [28 (19.8)2 + (19.8) 21 24.7 cpv:

In this problem, when the moments of inertia or the radii of gyration are tho same about the

X and Y axes, the rotational freqqencies are the same.
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Izz
24" z

7-24"0u 24"-.
h = 72" ' X or Yle

26" - T

X 19.8" X

Figure 29 - Problem 5 - Three Planes of Vibrational Symmetry

The translational frequency ft. is a function of the mounting frequency. To reduce this

frequency, mountings with lower natural frequencies under normal load must be selected. Tho

rotational frequency /lot, z can be reduced by redistribution of the components of the unit so

that rZ is larger.

For any of this group of problems, it should be noted that 4t need not be caiculated if

the load per mounting is the same as the load associated with the natural frequency of the

mounting, which is obtained from the report form to calculate the spring constant. It should

also be noted that f,, may not be exactly the same in the X, Y, and Z directions and depends

again on the mounting characteristics in the axial and radial directions. Nevertheless, for

mountings having nominally equal radial and axial stiffnesses, it can be assumed that the

natural frequencies in the two directions are close enough to be represented by one number

for most practical problems.
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A2.6. PROBLEM 6 - CENTER-OF-GRAVITY MOUNTING ARRANGEMENT
THREE PLANES OF VIBRATIONAL SYMMETRY

FOUR COPLANAR DIFFERENT MOUNTINGS

The unit is a nonhomogeneous rectangular body and weighs 3600 Ib; see Figure 30.

The center of gravity is 10 in. back of the front, 10 in. to the left of the right side, and 10 in.

up from the bottom of the unit. The X, Y, and Z axes coincide with the principal axes of

inertia. The dimensions, moments of inertia, and radii of gyration of the body are

1 = 50 in. Ix = 1500 lb-in. sec 2  rX - 12.0 in.

ii =30 in. /y = 2800 lb-in, sec2 ry = 16.4 in.

h = 20 in. 1 7 = 3600 lb-in. sec 2  r 7 * 18.6 in.

30"

t ,- 20"

/ x .---, -- - ___

c - 47, " F---, 34.9"-i®
zz

-I-

Figure 30 - Problem 6 - Three Planes of Vibrational Symmetry

Four different mountings, each having equal axial and radial stiffnesses, are attached

to brackets at distances from the center of gravity of the equipment inversely proportional to

their stifftiesses in order that elastic symmetry be obtained. The mountings selected wore

2000-, 1000-, 400-, and 220-lb mountings.

Their atiffnesses are:

For the 2000-lb mounting,

k WRf2  2000 (15)2k I 45,900 lb/in.
9.8 9.8
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For the 1000-lb mounting,

2IV I 000 (15) 23,000 lb/in.
9.8 9.8

For the 400-lb mounting,

A i2 ,400 (15) 2

3 0()- .8 9.8 9200 lb/in.

For the 220-lb mounting,
W[2 '220(l.5)2 = 5100 lb/in.

9.8 9.8

The mounting locations and their spring constants are

Mounting No. I = X  Y = ±D} ] = +) 7  k(kx = ky k 7 )

1 7 12 0 45,900

2 7 -23.95 0 23,000

3 -34.92 12 0 9,200

4 -31.5 -21.65 0 5,100

11 =8.32, 104, Xk )X2 = 1.967 x 107, -kD y2 = 2.357 x 107, 1 kD 2 0

The natural frequencies are

fir--3.13V k = 3.13 3-- x 8.32 x 104= 15.0 cps

since IkXI = k= 1 Vkz ,  ftr,x = ytr,Y= 'trZ

ro,,-3. ?3 rk k 2= 3 .3  2.357 107
k- 12.0 3600- - 21.1 cps

3 .1 31X 2 3 .1 3 | // .9 6 7 . 10 7

frot 1.1 3  l )'L kx 2 = _L 0 - 14.1 cps

rot, 3.13 i/ (k 2 + 2kt) 2) 3.13 1.967 . 107 + 2.357 x 107. 18. cs

fo,7 zx+Ik-) 18.6 3600--1.cp

A2.7. PROBLEM 7 -BOTTOM MOUNTING ARRANGEMENT
TWO PLANES OF VIBRATIONAL SYMMETRY
FOUR COPLANAR IDENTICAL MOUNTINGS

The unit is a rectangular nonhomogeneous body and weighs 7500 Ib; see Figure 31.

The center of gravity is 6 in. above the bottom of the unit and at its midlength and midwidth.

The X, Y, and Z axes coincide with the principal axes of inertia. The dimensions, moments

of inertia, arid radii of gyration are
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I = 68 in. IX = 8.66 x 103 lb-in.-sec 2  rX = 21.1 in.

w -- 34 in. 11 = 4.37 x 103 lb-in.-sec 2  ry. = 15.0 in.

h, = 24 in. 17 = 9.36 x 103 lb-in.-sec 2  r7 = 21.9 in.

Let it be assumed that this unit was subjected to vibration tests in accordance with

Military Specification MIL-T-17113 (SHIPS); 4 the most severe excitation of the components of

the equipment occurred at an exciting frequency of 24 cps. Therefore it is desired to avoid

resonance at this frequency aboard ship. In addition the equipment has an exciting frequency

of 40 cps (2400 rpm) due to a rotating pdrt. It is desired to avoid this frequency in order to

reduce the transmission of structure-borne noise. To avoid any magnification of vibration, the

rated frequency of the mounting selected, with its share of the dead load of the equipment

applied, sho,,ild be less than the exciting frequency divided by \i, or less than f/%'2=

24,' %'- = 17 cps . Lhis mounting, for the moment, may be assumed to be satisfactory with

respect to the 40-cps excitation in the equipment.

By referring to performance data in report form on various mountings, as illustrated in

Appendix 1, a 2000-lb mounting with a rated frequency of 15 cps obtained for a dead load of

7500/4 or 1875 lb can be found. Assume that the performance data for this mounting shows

equal stiffnesses in the axial and radial directions, therefore permitting easier use of the

Base Mounting Chart in determining the natural frequencies of the rocking modes of the equip-

ment. Assume also that under tests on a shock machine the mountings have adequate shock

strength, and the maximum deflection across the mounting is 0.75 in. from the equilibrium

position in all directions.

Solving the frequency equation for the dynamic spring constant k gives

w IV f2
k = (2, f)2 .... 0.1022 (15)2 1875 = 43,000 lb/in, for one mounting

9 9.8

where I, = 7500,'4 = 1875, and the translational frequency, ft,, of the equipment with four

mountings is

43,000
ftr 6.26 = 6.26 5 0 0 15.0 cps

where 11- 7500.

Now, for the YZ plane, locate on the Base Mounting Chart, Figure 20, the half-length

of the base divided by the radius of gyration, (1/2) /rX = 34/21.1 = 1.61, and the distance from

the center of gravity to the plane of attachment of the mountings, D 7 /rX = 6/21.1 :-0.284 in

nondimensional units, as shown in Figure 29. One position of the mounting along this line

will give a value for frnax"/fmin = 1.65 and Dy/ 1.60, or V.-= 1.60 rx = 1.60 x 21.1 = 33.8 in.

fherefore the four mountings should be a distance D = 33.8 in. in the Y direction from the

center of gravity of the equipment. For this mounting location the chart gives the value

(min /t ) = 0.975. With the ft, already corr)uted, the value s of fmax and f/.,' the two
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rocking modes in the YZ plane, may noA be computed

I . .. mm = 0.975, 4 = 1.6 cps

Im,, 15.0

f MOX
- = 1.65, f = 24.1 cps

n i.m 14.6

In a similar Aa-, the natural frequencies of the rocking modes in the .Z plane may
now be computed, again using the Base Mounting Chart, Figure 20. The half-width of the

base is laid off (u/2)/ry = 17/15.0 = 1.13 at a heipght Dz/ry = 6/15 = 0.40. The value at
the mounting position is taken as /maX '/,,in= 1.7. This point is V/ry 1.0, or 1.0xry

- 1.0 x 15.0 = 15 in. Therefore the four mountings are a distance L X = 15 in. in the X direc-

tion from the center of gravity of the equipment. For this mounting location the chart gives
the value [r~in ,/ = 0.82. \lith ft already computed, the values of fmax and /mjn' the t o

rocking modes in the A'Z plan~e, may be computed as follows:

imin /rain
0 .22. 12.3 cpst 15.0 ;nin

fax fmax/.. 1.5, f[max 18.4 cpsf n 12,.3

The rotational frequency with respect to the 7 axis is

ret 6.26 1/(DZk /,2 2) _ 6.26 000 [(15)2 ,(3+.S)2 25,2 cps
r 21.9 7500 (

Some of these frequencies are close to the 24 cps excited by ship hull vibration. By

moving the points of attachment for the same mountings closer together, the natural frequen-
cies of the mounted equipment may be reduced to more satisfactory values with respect tW the

exciting frequencies. In the Y7 plane, I)z/rX = 0.281. and if a point on the Base Mounting
Chart UY,/rA- 0.88 be chosen for the location of the mounting, then 'max"''min = 1.4 and

,.. /t, - 0.9. For this chart point, the mounting would be a distance in the Y" direction
M0.8 rA 18.6 in. from the center of gravity. The two rocking frequencies are

= 12.0 cps and /, Wx = 16.8 cps. In the NZ plane 1) = 0. 1. Choose a point on the

chart such that I). V .r 0.67, then fm,.' /',' n =  1.9 and fmjrn '/tr = 0.6. For this point, the

nluuntin, would be a distance in the X' airection, 1). = 0.67 ry 10 in., from the center of

gravity. The two rocking frequencies are 9.0 cps and 17.1 cps and the rotational frequency



with respect to the Z axis is

/r t 6 . 6 ( 2 + V ~ ) 6. 6 V 13,000 [(10)2 + (1 83 6)2 ) 1 . p
W21.9 "4500

Problem 7 is written in tabular fornm, including calculations for the two sets of mount-
ing locations, in Appendix 7. There, too, clearances around the equipment are calculated.

A2.8. PROBLEM 8 - BOTTOM MOUNT1ING ARRANGEMENT
TWO PLANES OF VIBRATIONAL SYMMETRY
FOUR COPLANAR ')IFFERENT MOUNTINGS

r'he unit is a rectangular rionhomogeneo us body and weighs 800 lb; see Figure 32. The
center of gravity is- 7.5 in. from the bottom of the unit, 14 in. from one end, and midway be-

tween the sides. The X, F, and Z axes coincide with the principal ax~es of inertia. The
dimensions, moments of inertia, andt radIii of gyration of the body are

I = .0 in. /A =l14 lb-in-stc2 rX = 9.17 i n.

ir = 20 in. 11. = 108 lb-in.-soc2  ry. = 7.22 in.

h = 1 .2 i n. /Z = 213 lb-in.-sec2  
tz = 10.1 in.

Since the mountings are not geometrically symmetrical wNith respect to the XZ plane, an
equivalent DV is needed in order to use the Base Miounting Chart, Figure 20. The equivalent

,, 2/1c k1 = N, " frfu -I-
D =2 N~ y ~ Left )0' Rigt) o fu mountings is Y= %:(I yLeft' "IRignti)
Q( Y,~ 1) 1) ~2. Because of the unequal distances of the mountings from the center of gravity

in the Y direction.. the two pairs of mountings must differ in ettiffness such that IC2

2; !1 so that a translational mode parallel to the Zi axis and a rotational mode about the
Z axis exist.

k 113

2 1I

resulting I two :1004lb ana two 100-lb mountings, with Ic0 = kc ,, located as shown in Figure 34.
IThe dynamic stiff.-esses of the mountings are, with natural frequ- ncies of 15 cps for all
rnnuntingrs,

g 2 2
-. -300(15)2 =60lbi.p- _ 100(15)2
9.8 =. 690 -bin 2 __ _ ___ )_ 300 lb/in.989.U G 9.8
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Figure .32 -Problem S - rwc Planes of Vibrational Symzmetry

Then from Figure .34,

=r v(1Y11)(1Y2 ) -11 (33) = 19.1 in.

Now the natural frequencies may be calculated. The vertical natural frequency ftr
is depend~ent on the stiffnesses

tr 3'13 / = 3.13 6900x 2+2300x2 = 15cps

800"

The rocking frequencies in the YZ plane are then obtained. First, converting to nonniafension-

ai units,

2 - 2 'r' ! Y 1 9 . 1 9 7 . 0 8 2
S .5,- 2.08,97

A17 9.17 A  9.17

Draw the elevation in the YZ plane on hn, Base kolinting Chart, Figure 20, in these nondirnen.

sional units and for the mounting location read off the frequency ratios:
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in--- fmin 0. , /ran = 3. cp
i092 15 0

n 13.8 CPS

ax- frax 2.48, fmax 31.2 cps
7mn. 13.8

Similarly for the .\ plane

10 1.39, 0.97 7.5 1.04
7.22 7.22

i - 0.5 , i'mi n 8.9 cp s

;tr 15.0

[ .;.. f'.. = 2.79, /max 24.7 L~ps

f min 8.9

The rotational frequency about the Z axis is then obtained

.1._ l x(k.\24 ky2) = 3.13 [l. 6900 (49 + 121) 2+2300(49+1089) 21 =30.2 cps: roz = 10.1 800

The natural frequencies are:

Translation, Z direction = 15.0 cps

Rocking, in the YZ plane , fmin = 13.8 cps, fmax = 34.2 cps

Rocking, in the XZ plane / 8.9 cps, / 24.7 cps

Rotation, about the 7 axis frot = 30.0 cps.

A2.9. PROBLEM 9 - BOTTOM MOUNTING ARRANGEMENT
TWO PLANES OF VIBRATIONAL SYMMETRY

FOUR NONCOPLANAR IDENTICAL MOUNTINGS

The unit is a rectangular body with a stepped bottom and weighs ZC00 15; ee Fis ;,re

33. The center of gr-ivity is 9 in. from the bottom of the body and midway between its sides.
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rhe X, Y, and Z axes coincide with the principal axes of inertia. The dimensions, moments

of inertia, and radii of gTation are

z

I = 48 in. I x = 1700 lb-in.-sec 2  r, = 14.7 in.

i - 30 in. /. = 792 lb-in.-sec2  r = 10.1 in. __-

-= 18 in. 17 = 2070 lb-in.-sec2  r7 = 16.3 in.- -. --- ---/ 7 /

YZ Plane XZ Plane

• 3 .' 1 3

H,
-- - 23" - --,, -- 20" --

z z

9", 9''
I I

Figure 33 - Problem 9 - Two Planes of Vibrational Symmetry

fino the mountings are not in the same plane, an equivalent 0 7 is neeaed to use the

Base Mlounting Chart, Fiaure 20. The equivalent 1)7 =. + Z Lower)12 approximately.
Z Upper+ oe

With the use of identical inountings in the arrangement, the remainder of the solution is simi-

lar to that for previous problems.

The dynamic stiffness, of each of the four 0O0-lb mountings selectea, assuming that

15 cps is the natural frequerwcy' of the mounting with a deau load of 750 lb, is

so



II f 2

f --750 (15)2  = 17,220 lb/in.
9.8 9.8

Now the natural frequencies may be calculated. The vertical natural frequency fir

is

ftr k- 3.13 -XjV )007 220 cps

The rocking: frequencies in the YZ planr are then obtained. First, converting to nondimension-

al units,

1 9.0+3.0

2 4 1.63, . 1.36, 2 -0.41
rT 11. 7 r 14.7 14.7

Fron, the Base Mounting Chart, Figure 20,

-mtn in = 0.92, f. =13.8 cps
, 1 5

f max x€
-- -- a--x I .58, 1 f x 21.8 cps

f' in 1 3 .3 ,

The rocking frequencies in the XZ plane are obtained next. Converting to nondimensional

units,

W-i t r 1 n = 0.79, fmin = 11.9 cps
-"ff ,\. D ltr 15.0

-2--- 19, A - 1.09, 0.59

.a = fa 1.8, 4,aX = 21.4 cps
r-..in 11.9

Finallv, the rotational frequency with respect to the Z axis is obtained:

_- 13 (. (Xk ,.2 ,,' ? 1.13 l300[17,220(4x 121+4x40)] 21.0 cpsro rz  16.3 V(

The natural frequencies are:

Translation, , direction /ir 15.0 cps

locking, in tho /' plane I n 13.8 cps, rrax 21., cps

Rock ing, in the AZ plane / in 11.9 /max 21. cps

Rotation, about the Z axis Ir -".0 cps
1rot
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A2.10. PROBLEM 10 -BOTTOM MOUNTING ARRANGEMENT
TWO PLANES OF VIBRATIONAL SYMMETRY

FOUR NONCOPLANAR DIFFERENT MOUNTINGS

The unit is a rectangular body with a stepped bottom and weighs 2500 lb; see Figure

34. The center of gravity is 16 in. from the left end and 9.2 in. above the bottom of the body.

The X, Y, and Z axes coincide with the principal axes of inertia. The dimensions, moments

of inertia, and radii of gyration are

1 48 in. /A = 842 lb-n.-sec2  = 1.,in.

w 3,2 in. 11 = 673 lb-in-sec 2  ry = 10.4 in.

, = 20 in. / Z = 1100 lb-in.-sec2  r7 = 13.0 in.

This problem is similar to Problem 10, both have a stepped bottom. In Problem 10, the

four identical mountings "ere located symmetrically to the YZ and NZ planes and were equally

loaded; in this problem the nonidentical mountings are symmetrical to the YZ plane but not to te

NZ plane. The\ are arranged so that 2. 2 1 along the ' axis, or

k1 2

using two 500-lb and two 400-lb mountings with equal axial and radial stiffnesses. Fffective

91 and V2 can be computed, and the rocking frequencies can be obtained using the Base

Mounting (hart, Figure 20.

h = V 2 I = / 11.4 22.8 = 16.1 in.

where the 800-lb mountings are 11.4 in. and the 400-lb mountings are 22.8 in. from the center

of gravity in the Y direction. The individual mountings have a natural frequency of 15 cps

with apaad loads of 833 and 417 lb for the 800-lb and 400-lb mountings, respectively

k80 2 - 833(15)2= 19,125 lb/in.
9.8 9.8

k ='2 = 417(15)2 9514 lb/in.

400 9.8 9.8
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Actual NountinC Locations

_ - -  Equivalent Mounting Locations

Figure 34 - Problem 10 -Two Planes of Vibrational Symmetry

1) - Upper Lower 9.2 , S = 7.1 in.
2 2

Translational frequency:

,r = 3.13 - =3.13 (2x 19,125+2x9574) 15.0 cps

The roc!'ing frequencies in the YZ plane, converting aimensions to nonaimensional units by

I
2 22.6 01.98, =-6. 1.41 , z 7.1 -0.62
r 11.1 11.4 11.4

are, frorn tho chart.

frnir, - Min 0.85, im/ - 12.5 cps
14.7

&3



12.8 1.85, rax =- 23.7 cps

The rocking frequencies in the XZ plane, converting dimensions to nondimensional units by

-- -D.5, x 10 = 0.98, 7.10.70

r 10.2 10.2 ty 10.2

are, from the chart,

/rrin =/rain -0.71, /, = 10.A cps
I't r 1 t .7 , ",r

fmax = max 2.00, / 20.8 cps

[ ain 10. imax 2

Finally the rotational frequency %%ith respect to the Z axis is obtained,

ot-k 1 \2 + Xk 2) .1 S 1 2. 19,125 (10)2 * 11.4)2 1 + 2x957410)2 + (22.3) 2 f1
rZ VF -',I 13.0 I/ 2500

= 21.3 cps

The natural frequencies are

Translation, Z direction /t = 14.7 cps

Rocking, in the 1'7, plane fm,n = 12.5 cps, /,,a = 23.7 cps
Rocking, in the Z plane [mi = 10.4 cps, f ,ax = 20.X cps

Rotation, about the Z axis fret = 21.3 cps.

A211. PROBLEM 11 - BRACED MOUNTING ARRANGEMENT - ONE PLANE OF
VIBRATIONAL SYMMETRY -FOUR IDENTICAL BOTTOM MOUNTINGS

TWO IDENTICAL BACK MOUNTINGS

The unit is a trim punip and motor with vertical in-line shafts and weighs 2035 lb; see

Figure 35. The center of gravity is 40 in. above the bottom and is on the vertical centerline

of the unit. The X, Y, and Z axes coincide with the principal axes of inertia. The dimen-

sions and moments of inertia are

I = 22 in. /X = 2150 lb-in.-sec 2

w = 22 in. 1' = 2150 lb-in.-sec2

h z 84,1 in. /Z =  321 lb-in.-sec 2
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The four 550-lb bottoma mountings and the two 50-lb back mountings are initially lo-

cated as shown in Fieure 35.

Plan

-• 7

-- I-- - -I - /V'-

711

th .. . . • ---ul-

II

4...

Figure 35 - Problem 11 - One Plane of Vibrational Symmetry

The dynamic stiffnesh of one 550-lb mounting may be determined, using an assumed

value of the average rated frequency in radial and axial directions for the load to be supported,

by the formula

w4 j2 _484 (16.7)2
A' - .8 =13,860 lb/in.

9.8 9.

ano similarly for the 50-lb mountings
44i (16.0)2

- ) 1150 lb/in.
9.8

The values of the loads are found as follows:

Let 1" be the load on each back mounting and (G the load on each base mounting. Then

1U+ 1 " - 203' lb, but each base mounting is rated at 550 lb and each back mounting at 50 lb.

There fore

G' - .__:" or (," llk"

and

•4t4/- + 2/.' = 46 F-- 20Qt . /p = 44 Ib, ano C' = 484 lb.
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The problem may be solved in two general stOps; the first, solving for a, b, and B in

terms of the coefficients of the twNo cubic equations /4I' C 1, D and B2, C2, 0), and the sec-

ond, taking off the frequencies from the plot of the cubic equations in terms of parameters

a, b, R; Fitire 23.

olve for the three natural frequencies in the 1Z plane of vibrational symmetry by de-

term ining
C Da :L b BD1B
B12 B1 3

N% her e

R= P2 " +

C p2 p3 + P2 q1 p 3 q1  95.6 [(,:k7 y) 2 , ( k yZ)2]2 r,\.2  11

D 2 P3 q1- (I. [ .k; y~)2 '- P3 (1 AL Y Z)]
it2 r,\.2

and
S 98 k9.78 p3  .78 "

P 9.78 ,,kX' P 2 = - Y, P3 - ' -kz

9.78 ( k .2 + kZ 2 ), q2 = 9.73 (1.k 7 X 2  kAZ 2 ),

ql= - (=k +XkX + qx2 )
R4 rX2 IV r y2

q3 9.78 (1 k z .*\V2 + I k X 1 2 )

IV rz 2

It may be soon that in these equations only the constant IF, the spring constants

kx1 A , kz , and the positions of the mountings are known. The expressions rX2, rl , rz

(I k1Y) 2 , (k I Z) 2 , 1k', X ky' .lk , .k y2, 1 k .Z 2 , 1 kYX 2, 1kxZ 2 and I k 1y2 must be

evaluated.

Since each mounting has equal stiffness in all directions,

~k. Xk=_k X 2 h kan1,2 2  k Z 2"i k Y \. i k. I = I _'I k71 ,. n k

To determine rX,, r)., and rZ

/ i r2

r 2 I\ 21-50 107.8 in.2

r 2 /1 210 407.8 in. 2

r 2  17 _ - 60.R9 in.
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and to determine the sumniations:

< A- A 4-1 = (4 13,600 + 2 x 1150) = 5.670 x 104

k 1 8.160x104 411 2 1 V\I2'0.4,396x 106

k 2 1)2 1.I60 . 104 k '2 -2 = k2 v22 0.4896x 106

A3 Y3 8.160 . 104 A.3 Y32 = k 3 \'32 = 0.4896x 106

1 S8. 1(60104 = 2kyo86~o
A4 Y 4 4 14 4 "X'4 0.806 106

k 5 ) 5 0.001 5 × 2 00-1K10 6

k6 6- 0.690 104 / 6 '6 2 = k-6 V62 -- 0.0411 x 106

".k 1 = 1.380 . 10' 1 .k 1'2 = k 2  2.041 x 10 6

( 1 A )2. 1.901 x 108

k -5.4.0 ×" 2 2.176 x 107
-- I O11= "i 1 72 105 1 7

k 2 Z 2 = -5.440x 10' k 2 Z2 = 2.176 . 10 7

k 3  / 3  =- 5.4-10 × o 1 5 k3  Z 32  = 2.176 . 107

A4 Z4 = -5.4.t0 x 105 k4 742 = 2.176 . 107

-5 Z 5 = 0.196 x 10S k 5Z52 = 0.033 10 7

K 6 7 6 = 0.196 . 105 1 6 Z J = 0.03 10

1k7,= -2.137 x 107 1: k 2 -o70 7

(Ik 7)2= 4.567 . 1012

Then

P2  97' k x = 9,7'8 ×.670 × 104 = 0 272 103
P! --P2 =  3 , 2035

and

9.78 (Xk1 2 +,,:kz2 9.78 (2.041 x 106 + 8.770 x107) _ -. 056x103

R 7 y 2035 x, 407.8



9.78 k\ . 2 k~ /2) Z y~ ~12' vk '2 v k 72
q 2  - .7 2 . . and since kZ. k , ' .' ',

Wry

an u
ry2 = rx2

then

q2 = qI

3  2. 8 ( k .2 W 2 2035 x 60.C9 (2.041 x 106 + 2.041 . 106) --0.3219 x10

The coefficients P 1 , C 1 , ) 1 may now be determined.

I P2 + P3 + 0.2722x 103 +0.2722x 103+ 1.056x 103 = 1.600x10 3

C I_, = p 2 p 3  i-p2  ql + p q, 9, [( !k + (X k v Z ).2]

0.2'2-2 x 103 (0.2722 v 103) 0.2722 ',103 (1.056 . 103) + 0.2722 x 103 (1.056 -103)

95.6 [1.904 x 108 + 4.567 x 10121 3.904x 105
(203 ) 2( 07.8)Li

[) p q1 - 05.6 [p 2 TY)2 + p 3 (lkZ)2lVI P2 q .g, 2 IP2 Ek.2

(0.2722 103) (0.2722 x 103) (1.056 x 103) 95.6 - [(0.2722 103) (1.904x 108)
(2035)2(407.8)t

+ (0.2722x 103)(4.567 . 1012)]. 7.89 x 106

Nov that B1, CI, and 1) 1 aru known, the ratios a, b, and B may be calculated, and the

three natural frequencies for the modes of vibration in the YZ plane may be taken off the

chart, Figure 23.
C I 3 x 90 0.153

B 12 (].600 ×.103)2

b = 1  7.89x106 = 0.00193
BI 3 (1.600 x 1I03) 3

= = 1.600 × 103
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From the chart, Figure 23, the natural frequencies are

f = 36.0 cps, f2 = 16.5 cps, f3 = 4.7 cps.

To calculate the natural frequencies of the modes of vibration not in the YZ plane of

vibrational symmetry, a similar procedure is followed:

k I Y Z = 32.64 x 105

k2 y2 Z2 = -32.64 x 10 5

43 3 Z3z3 = -32.64 x 105

k4 Y4 4 = 32.64 x 10-

i:5s 'S X = 1.173 x 10 5

k 6 Y'6 Z 6 = 1.173 . 105

XkYZ = 2.346 x 105

() k Y Z) 2 -- 5.504 x 1010

B 2 =PI + q2+ =q3 0.2722 x 103+ 1.056 x 103 4 0.3219× 10' 1.650 103

C 2 =p, q2 + P1 q3 + q2 q3 - 95.6 [ (I 1kxY)2 + L (IkxZ) 2 + I (XkxYZ)2l
W2 Lr ry 2  ry 2 rZ2-J

- (0.2722 , 103)(1.056× 103) 4 (0.2722x10 3 ) (0.3219x10 3 ) + (1.056x 103) (0.3219×103)

95.6 r (1.904x 108) + 1 (4.567 x 1012) + 1 - (5.504x1010)1
(2035)2 [60 . 89  407.8 487.8 x 0.89 j

= 4.561 x 10'

D2 Pl2q2 q3  k5.6I22 (3k Y) (k Z) 2  I
II 2 r z

J2 r 2 r 72 0

+ 1870 (Xk\.1)(X C .)(XkxYZ)
It 3  Y2 r 2

(0.2722 x 10)(1.056103) (0.3219 x 103) 97..6 [105 .,103 (1.904 108)
(2035)2 [ 60.89

+ 0.3219 x 103 (4.567 . 10 12) + 0.2722x ."103.504.10101
V 407.R 60.89x07.8J

170 (1.380 x 104)(-2. 137 106) (2.346x10 S) = 9.12 x 106

2035) 3 (60.39)()7.8)
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a = -2 4.561 x 105 0.168
D2 2  (1.650 x 103 ) 2

=D2 9.12x 106 0.00203

B23 (1.650 .103)2

B =B2 = 1.65 x 10 3

From the chart, Figure 23, the natural frequencies are

f4 = 35.9 cps, /S = 18.0 cps, /6 = 4.6 cps.

Problem 11 is also presented in tabular form, Appendix 7, whure calculations of the

clearances needed around the equipment are also made.
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APPENDIX 3

EXPERIMENTAL DETERMINATION OF MOMENT OF INERTIA
WITH A TRIFILAR SUSPENSION

The most practical experimental arrangement for determining the moment of inertia is
the trifilar suspension 11 where three wires or three cables support a table or platform upon
which different units can be placed in various orientations; see Figure 36. In the simplest
case the center of gravity of the unit is placed over the center of the platform which is equi-
distant from the three supporting wires. It the platform suspended from the three supporting
wires is symmetrical, its center will also be its center of gravity.

Vertical --! ne
through CG
of Unit plus
Table, at
Center of
Table

Platform - Equilateral
Triangle

Figure 36 - Trifilar Suspension for Experimentally Determining
Moments of Inertia

The equation for the moment of inertia about the vertical axis through the center of
gravity of both the unit and the table is

1= Wr2 T 2

4 2 L
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where W is the weight of the body plus the platform, pounds,

T is the period of oscillation, time in seconds from one extremity of rotation to the
other and back to the first, i.e., time of one cycle,

L is the length of supporting wires, inches,

r is the distance from center of gravity, i.e., center of platform, to supporting wires,
inches, and

I is the masq moment of inertia of the unit plus platform, pound-inch seconds squared.

If the platform is rotated 5 dog or less (L must be at least three times as large as r)
and released, the period, T, may be measured. The accuracy may be increased by measuring

the timne of several oscillations and dividing by the number of cycles. Once the trifilar sus-

pension platform is built, L and r are fixed and the moments of inertia, I, now becomes

1 =KT

where

4,r2L

rhe ioment of inertia of the table alone may be determined in a similar manner without
any e.u ipmenr installed on it. This moment of inertia is then subtracted from that for the

unit plus the table to give the moment of inertia of the unit alone. The determination for the

table alone need only be made once since it will remain constant. If blocks are needed to

support the unit in an appropriate orientation to the table, then the period, T, should be deter.

mined with the table and blocks arid this moment of inertia should be subtracted from that of

the table, blocks, and unit together.

The principal inertial axes of the equipment may be determined by repeated tests with
changes in the angular position of the equipment without a shift of the center of gravity. The

ibosition of the equipment resulting in the maximum period establishes the maximum principal

axis. fhe position with minimum period establishes the minimum principal axis. The third

axis is at right angles to the other two.

A3.1. GENERAL CASE

In general when the unit is placed on the platform, vertical lines through the center
of gravity of the equipment and through the center of gravity of the platform do not coincide.

The table should be so designed that it is symmetrical and its center of gravity is equidistant

from the suspension wires; Figure 37.
Ahen the equipment is installed on the platform, the combined center of gravity of the

oquiprrit and the piatform is determined; Figure 38. Then tme distances, r,, r2 , and P3, from

the combined center of gravity of the equipment and the table to each of the suspension wires
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Supporting
"t / wires

02 0
0r 3  r2

Axis through Center of r

Gravity of Platform Vertical Line through
Center of Gravity of
Equipment and
Platform

Figure 37 - Location of Center of Figure 38 -Location of Center of Gravity
Gravity of Platform of Equipment Plus Platforn

may be determined. The equation for the general case of moment of inertia is

I r4 I 2 rr3 72 r1 sir 1 + r 2 sin0 2 + r3 sinO3  1
4 Yf2 L r2 r3 sin 1  + rFr 3 sinO2 + r Fr2 sino 3 j

uhere i is zhe Aeight of the body plus platform, pounds,

' is the period of oscillation, seconds,

L is the length of the supporting wires, inches,

r is the distance from the center of gravity to the supporting wire, inches,

0 is the angle between radial lines from the center of gravity to the supporting
wires, degrees, and

I is the mass moment of inertia of the body plus platform,pound-inch-seconds squared.

A3.2. DESIGN NOTES

In the design of the cable-suspended platform, a number of factors must be considered.

The dimensions L and r should be such that reasonable aiffercnces in period of oscillation
can be obtained for the apparatus alone and for the apparatus plus the equipment so that I may

be aeterminea with suitable accuracy. The distance r from the center of the platform to each

of the cables is determinea largely by the size of the equipment being tested. This distance
should be kept as small as possible, since the I of the platform alone increases as the square

of r. This increase in I can be counteracted by relatively larger increases in L. For the
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linear approximation of the analysis to hold when the oscillation is started by an angular dis.

placement of 5 deg or less, L must be at least three times as large as r. The I of the platform

for a given r can be minimized by fabricating it from light members, but the size of the plat.

form components is limited not only by the size of the equipment but also by its density. A

pointer attached to the platform is handy for measuring the time of oscillations. The weight

of the platform should not exceed the weight of the equipme, t. The trifilar suspension should

be calibrated using objects whose moments of inertia are known to determine accuracy and

capacity of the apparatus. 12. 1 3

For units of arproxii. ely the same size and weight, only one trifilar suspension is

required. If, however, the sizes and weights vary considerably, two suspensions should suf.

fice, one for the larger units and the other for the smaller.
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APPENDIX 4

REPORT FORM FOR RESILIENT MOUNTING CHARACTERISTICS

This report form indicates the type of information available on all types and sizes of

mountings as a result of tests made at a naval activity. The mountings must pass these tests

in order to be acceptable for shipboard use. The reports may be obtained through the Bureau

of Ships. In reports published by the U.S. Naval Engineering Experiment Station these sheets

are inserted in the back and are intended to be removed and retained by design groups engaged

in the solution of mounting problems.

The X,Y, and Z axes here are local axes applicable to individual mounts, and the use

of capital letters does not imply the significance attached to the notation that is used for

mounted assemblies in other sections of this manual.
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SUMMARY OF PERFORMANCE DATA ON TESTS OF
RESILIENT MOUNTINGS

(Ready Reference Shoets - Abstract from EES Report 050095E)

1. Type of Mlounting: Portsmouth BST No. 1000, Design A

~2. \Iounting NiC'-: Hood Rubber Company, Watertown, Mass.

3. Miounting Dwg No.- (BUSHIPS) 5000.S1112.F-13857770C

4. Applicable Specification: (Procurement) NMIL.,M.17191A

5. Standard Navy Stock No.: P17-.k-75887-2126

6. Rated Load: 1000 lb

7. Natural Frequency: Z Dirgetion =13.6 cps

X and Y Directions =16.0 cps

\1OUNTIN-1 Pwf AILS t mo.01O

- 3.687 -100S - X.Axis

'Note: '"" 2 Unloa~ed Height

"H' 2." Loaded Hit'.l(Upoer Rated Los.') X.Anis
8

Plan View of Mounting Plate

1- 138"1 Flanged Sleee

8~~ 0 aMt linlt 1Cotc

Z.A 'is
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SUMIARY OF TEST DATA
(Ready Reference Sheets - Abstract from EES Report 050095E)

1. Vibration:

i Load on Mountings lLoad on Mountings Load on Mountings Load on Mountings
1,Characterishcs 1 1000 lb 900 lb 800 lb I 700 lb

I Z XandY IXandY Z X and Y Z Xand Y
* I f

Natural
I Frequency

!n .ps) 3 16.8 15.3 17.8 16.1 19.0
Critical 0 amp- "iI

i' Peicent 5. 5.3 4.7 4.6max , u , UM'I -t -

Transriissi-
1 bitity 9.) 9.5 10.7 10.9

Scring Con. II
stail I

Kd lb!in.) 18,900 26,200 119,100 26,000 19,200 25,900 18,600 25,800

2. Drift:

1 Naturai Frequency - CPS
Deflection Drift 1 Hour

Direction Load Temperature After 1 Hour to 200 Hours I Room Temperaturel 3 Miriufes Room Temperature

_ I eg F ,n. in. Before Test I After Test Alter Test

i,ooo 160 0.079 1 0.033 14.7- 14.2

Z .,.014 1,.1 1

~,0~ ~ 0 0.050 0.029 17 - 1 17.7,, ,X0 a0 005 0.02087 - i 1.
1.000 13 0.050 0.008 17.7 - J 17.3: ,i I ,__ _ I _ __ _

3..Statzc Load Deflection: 4. Shock Deflection:
Lo-d Deflection -lnc Load on

! 4 Mn",1ings Deflection - loch
i0 X anjy Direction I UiS;b Up( Down

7C1 C 04 4,000 1.00 Do 8

.000o .03 0.06 z 2,800 - -
5,300 C.41 0.31 4,300 1.00 0.

10,000 0.6 . 0.54 X and J _
15,000 1 0.67 0.61
2 o,000 0.7r 0.65

5. Brief Remarks:

(a) Inspection: .lountingqs conformed to drawing details. Neoprene rubber stock Type C
used. %lountinws manufactured in June 1.953 and June 1 .s2. roiti rompliprd
\May 1953.

(b) Tet Specification: MIL..171185 (SHIPS).

(c) Transmissibility: No remarks.

(d) Unifornity: ,ri varied lest than 0.5 cps from average of 4 mountin,' rested.

(e) Static Load Deflection: No remarkn.

(f) Noise Isolation: Satisfactory. See E.z Report 050095F.

(g) Shock Damawe: There was no damage observed to the rabbet or metal parts or io the
lohd bolts (1-.14 in. 12NF.3 of Alloy No. 2) or foundation bolt (7-'s in. 9NC-2 of
mild steel).

,h) Salt Spray: No dcamage or significant change.

(i) Oil l~rner.:ion: No rna ae or significant change.
(,) Drift: No significant change in fn .i, a result of those tesr.

(k) Coid itorage: No darape or significant change.
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APPENDIX 5

DERIVATION OF EQUATIONS OF MOTION AND FREQUENCY FORMULAS
FOR A RESILIENTLY MOUNTED RIGID ASSEMBLY

A5.1. BASIC THEORY

For generality there is given here the analysis with respect to an arbitrarily oriented

set of axes, which presumably would be chosen with reference to some compartment on the

ship but which need not line up either with the axes of the mountings or with the principal

axes of inertia of the mounted assembly. This procedure mas require the evaluation of both

moments and products of inertia. It will be assumed that all mountings have at least onO axis

of elastic symmetry, by which is meant that the spring constant of the mount is thA same in

any direction normal to this axis.

The analysis is based on linear theory and hence can be considered valid only for

small motions. Under large shock motions the mountings may be displaced into their nonlinear

ranges. Since one of the main objects in design is to avoid steady-state resonance under exci-

tations of known frequency, the linear theory is useful in predicting whether large vibrations

are likely to build up.

A5.1.1. THE EQUATIONS OF MOTION

Let a right-hand system of fixed axes be taken with the origin at the center of mass of

the mounted assembly when the system is in its rest position. Let u, v, and w be displace-

ments in the x, y, and z directions, respectively, of the center of mass, and a, f, and y tho
components of angular displacement about the z, y, and z axes, respectively; see Figure 39.

z

y

0 x

Figure 39 - Right-Hand Coordinate System Used in the Analysis
with Arbitrarily Oriented Axes
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With the restriction that the motions remain small, the dynamical equations are

X

x -x I t

tfy =1 fIV /y -1 aXY Mz = /I/ -X lya - IYZ, &

where IX, Iv, and I z are moments of inertia and I.Y, Ix,. , and ly are products of inertia with

respect to the fixed axes when the body is in the rest position. The restriction to small

motions permits treating the I's as constants. The F's and Vi's are sums of the forces and

moments acting on the body due to the elastic distortions within the individual mountings and

can be expressed by equations of the type F = -Ku where K is an elastic constant of the en-

tire set of mounts,

A5.1.2. CALCULATION OF THE ELASTIC CONSTANTS

The elastic constants of the individual mountings must first be determined. The

"effective point of attachment" of the body to any mount will be assumed to be a point about

which a rotation of the axis of the movable element of the mounting evokes only a torque, and

this torque will be assumed to be negligible in comparison with the moments on the mounted

assembly resulting from the rectilinear displacement of the effective points of attachment.

Thus only the axial and radial stiffnesses of the individual mountings have 0 be taken into

account in the analysis. It is to be noted that a mounting can have radial elastic symmetry

with respect to a certain axis without necessarily having polar symmetry in its geometrical

construction.

The elastic constants that must be calculated for the entire set of mountings are desig-

nated here by a K labeled with two subscripts, e.g., K., and each constant represents a re-

storing action in the direction of or about one coordinate axis due to a displacement in the

direction of or about the same or another axis. The sign convention used conforms with the

usual convention applied to the simple system of one degree of freedom, according to which,

if a displacement in the positive direction results in a force in 'he negative direction, the

spring constant is taken as positive. Exact definitions are given in the Notation.

It can be shown that in such an elastic system conservation of energy requires that

Kii-- K1i so that the total number of K's required is only the number of possible combinations

of the six coordinates defining the displacement of the mounted body taken two at a time,

plus the six of the form Kii. This gives 15 + 6 or 21 K's to be evaluated.
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Let x, y, and 2 be the coordinates of the effective point of attachment of an individual

mounting, k. and k r its axial and radial spring constants, respectively, and k,, 0., and 95
the direction angles which its axis makes with the x, y, and a axes, respectively. For the in-
dividual mountings there are onl six elastic constants to be evaluated since local torques

generated by the displacement of a mounting and forces due to its rotation are considered

negligible, These constants are denoted by kXX, 4y, k, k , and k Exact defini-
V,~~ and1 k~t Z.

tions are given in the Yotation.

In Figure 40 the axis of the movable element of an inclined mounting is shown by the

line 0 P making (irection angles 6 , and (5 with axes , .1, and z, parallel to the X,

y, and Z axes, respectively. The effective point of attachment is assumed to be P and through
this point is passed a plane normal toO IP intersecting the z axis at Q and the y, axis

at R.

If , is displaced a small distance u 1 in the positive x1 direction, there will be develop-

ed a restoring force whose axial and radial components are indicated by F and F in Figure 40.

In this case F. is (algebraically) equal to u I k. cos6, and F r to uIk sin6d. The sum of the

a components of the restorin force is thus

-u k cos 2  -U k sin 2 6

By the definition of k, this sum equals -u 1 kxz.

Hence

kXX k cos 2  x + k, sin 2 6

Simila.rl\

kyy k a cos 2 ( y + k, sin 2 (.

k k c S2 6 k sin 2 ¢z

To obtain the constant k the components of F and F, in the y direction must be

found. The former is Fa cos 6 = U1 k a cos 6 cos y. To obtain the y component of F , account
Y' r

must be taken of the fact that F, lies in the plane determined by 0,1 and 01 i so that its line

of action coincides with QP. F mae then be considered as the resultant of two vectors Fo

and F0 p (shown dotted in Figure 40) in the P0 1 Q plane, one parallel to 0( 1 1 and the other

parallel to 01 P; the angle between these two vectors is d.. Of these two vectors onl%

ha a corrponent in the Y direction. Since the force triangle is similar to the triangle P0 1 Q,

numericall\

Fr  Co s P ,
F U 1 ekr sin 6 x -? Il k r cos6.

tan 6 sin 6
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'md the component in the y, direction, which is also the component or F, in this direction, is

u I k, cog 0. cos (3. If account is taken of the directions of the force component!, and the con-

vention for the k',s, it foilows that

kY = (Aa - kr) cosg6 z cos 0Y

similarly
kyz = (ka - k ) cos(b. cos&.

and
kI, -(ka - r,) cosk z cos0 x

It may be noted that the same values of the k's are obtained if the fine OP is drawn

in the opposite direction along the axis of the mounting. Furthermore, they depend only on
the dire( 'on of the axis and are not changed if the mounting is rev'wrsed end for end, or if the

attachments to the assembl) and to the foundation are interchanged. In Figure 40, 0 1P'repre-

sents the axis of a mounting which is the mirror image of 0kIP in the y, z, plane. The same

formulas are obtained with 0 replaced by 95'. The mirror mounting has the same value of

k. z as the original mounting but equal and opposite values ofk and k.

For the entir assembly, then, K,, 1 k summed for all the mountings, and similarly

for five other K's.

For A"s involving rotation, however, the effects of small rotations of the mounted agsem-

bly must also be taken into account; this involves the position coordinates of the effective

points of attachment. For example, consider the evaluation of Kh'. This requires the deter-

mination of the force in the x direction due to a unit positive rotation of the mounted assembly

about Or. A small rotation dO about Oz causes a displacement of the effective point of attach-

ment of each mounting in a plane through this point drawn parallel to the yz plane; the z com-

ponent of this displacement is ydIO and its y component is -zdO. These displacements evoke

forces in the x direction of magnitude -k,, ydO and +k , zdO. The total force in the x direc-

tion is the sum of these forces or -k . , ydO + k, YzdO. The resulting force due to the entire

s stem of mountings is denoted by -K dO. Hence, for the summation of all mounts

!A'"a = 1 (kz IV - k. yz)

Again, consider the evaluation of Kao This requires the determination of the moment

shout O)x due to a unit positive rotation of the assembly about Oy. A small rotation dO about

Oy causes displacements of the effective point of attachment (x, y, z) of any mount in a plane

psrW'ei to the xz plane of magnitude zdO in the x direction and -xdO in the z direction. Each

of these displacements, in turn, may evoke forces in both the y and z directions. Thus the

displacment in the z direction gives forces -k,zdO in the z 'irection and -kzdO in the
y diruction, whereas the d:splpeement in the z direction gives .orces + kzz dO in the z direc-

tion and A- xd in the y direction. These four forces yield the following moments about

() por unit angular displacoment:
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A -x2V; +kxy 2 ; -ikxv and -yx

The resultant moment ectuals -KA' dO. Hence for the entire set of mountings

KO) G 1 (-kzZ z y -k, Y z 2 + k z+ k-7z xz)

It turns out that, as is reouired by the conqervation of energy, the order of the Sub-

scripts on the K's is immaterial; thus K. = K,,O; K8,2= Kaf; etc.

By suhprocesses the following get of K's was derived:

K =X k

K -' k

W z

A =r 1(kz' kv"-k -2k yz)

A' X (kx,:22 + kxy2 - 2kx YZa)

A' V .(-k zyk V2 +k X?/ + k Y2x)

K A-. yz k VZ2 + k,,z + k~Zxy)

A' 1 (k,,z - kxzx)

A'L '-V (k , zx- k y)

A'Vo (kyz y- kyz)

A (kL Yx -xy

A' i(- z Y ky z P)

K 1 (k 2k~
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A5.1.3. THE FREQUENCY EQUATIONS

On substituting terms of the type -uo 2 fori; in the equations of motion, since the mo-

tions in question are simple harmonic, the equations of motion become in algebraic form:

2co2 + KU u + K. v + Ku. w + KU0 + Ku + + Ky y =0

-mNA) 2 + K,, u+ KV v+ K, w+ K a +Kv + Kvyy =0

-mwco 2 -# KWu .+ KVWv + KwW + K a +Kw[3o+ K yy=0

-Ix GO J2 + Xy o2 , l XZyO2 + K,,u + Kvav + KwaW + KOla + Kago + Kayy = O

-IFg±2 + ZY 2 + lyzYco 2 + kupu + Kvov + Kwow + Ko~a+ Ka± + "/3yY = 0

-1z y W2 + IX 1a W 2 + ly Z ow2 + K. yU + Kvy v + Kwy W + K ay *+ Kgyo + K1yy y = 01

The follo~ing determinant of the coefficients of the displacement coordinates, when

set equal to zero, gives the frequency equation.

K,, me:-2l K,, K uaK,

K2 K K K K K

h'UW KVW Kww - rnCo 2 Kwa Kw0  Kwy

K Kv Kwa K - Ix(2 K 0 + IlGJ2 Kay + 1 (02

Kut3  KVP Kwo Koo+ !XYcW2 K go - IJo 2  KPy + Y. o, 2

K. K Kwy K + 1-I 2  Koy+ l ,02 Kyy _1'w2
U vyay X Z ~ y . y

One method of solving the problem is to find by trial the values of w (the circular fre-

quency) for which the determinant of the coefficients of the displacement coordinates vanishes.

If the values of the determinant calculated for various values of cu are plotted against cu, a

curve is obtained which crosses the axis at each of the natural circular frequencies, provided

the six frequencies are distinct. When, however, certain frequenci's coincide, the plotted

curve ma. only touch the axis at the corresponding points without crossing. If, when the six

frequencies are distinct, the set of simultaneous equations in u, v, w,&, 0, and y above

is solved, in each case with the appropriat-e value of (, the values of the ratios of the coor-

dinatos found will represent the normal mode pattern corresponding to that particular circular

frequencN. If two or more freouencies coincide, the mode pattern for that frequency is not

unique. If a number n of frequencies are equal, n different basic mode patterns can be found,
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and any other mode pattern that is possible at that frequency can be regarded as a linear com-

bination of the n basic modes.

Under special conditions it may be found that various Ks in the frequency determinant

vanish. If all the K's of the type Kqi (where i i i) vanish and the axes are princi'a! ixes of

inertia, there will remain only terms falling on the main diagonal. In this case the thr3e mo-

tions of translation in the x, y, and z directions and the three motions of rotation about the

x, y, and z axes are all independent, and each frequency may be found from an equation of the

type Ku - MC 2 = 0. Although thIe motions are independent because of the symmetry of the

mountings, the frequencies of different mode. may be the same.

Where only certain terms not on the main diagonal are zero, it may be found that the

set of six simultaneous equations in the six unknowns breaks down into smaller sets in fewer

variables which are independent of each other. These sets may then be treated qeparatelN,

and in such case! it may also be found that the frequencies of different modes coincide.

The evaluation of the elastic parameters requires the tp!juiation for each mounting of

the following (luantitips:

k, k,, -, .y ?, 6 , 6 , and (4
y

These are, respectivoly, the axial stiffness, the radial stiffness, the three position

coordinates of the cffective point of attachment, and to thre e direction angles which the axis

of the mount ,akeQ with the x., y, and z axes. It ir" obvious that, regardless of the physical

shape of the mounting, if any two of its principal stiffnesses are equal, the analysis given

here is applicable by taking the mounting axis as normal to the directions of equal stifness.

A5.1.4. VIBRATIONAL SYMMETRY

The solution of the general frequency equation is so laborious that it is seldom under.

taken without the use of a high-speed computer. Usually, however, the mountings themselves

are so arranged that one or more planes of vibrational symnr.otry exist, and then the sixth-order

determinant can be broken down into independent determinants of lower order. Such cases will

be treated in the following sections_.

Vibrational symmetry exists with respect to a given plane passing through the center

of gravity of the mounted assembly when motion parallel to that plane has no tendency to

excite moticoi per)o@idi'tilntr to the plqne; then, also, translation in a perpendicular direction

or rotation about an axis lying in the plane does not excite motion parallel to the plane. Such

s mmetry usuall\ requires that two of the principal axes of inertia of the mounted body lie in

the plane of s)mmetry and also that there be elastic symmetry with respect to this plane. It

is convenient in such cases to take the axes of coordinates along the principal axes of inertia.

Coordinates so defined will be denoted b) X, Y, Z to distinguish them from the more general

coordinates x, y, a. The subscripts on the k's and I's will therefore be capital letters.

For computational purposes in these simpler cases, it is more convenient to write
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explicit symbols in place of Ku, etc., and for simplicity kX, ky, and k7 will be written for

the individual mountings in place of kXX (or k.,), etc. The appropriate sums are easily read

off from the definitions of the K's, for example

Kuu = x k .. . -

I' V = kX Y

K IO = ) (kxZ - kX zX)

Koo " I (kzY 2 + kyZ 2 - 2kyzYZ)

Summation over all mountings is understood in each case.

Explicit frequency formulas will now be given for the principal cases that may arise

in practice, X, Y, Z axes being assumed in all cases.

A5.2. ONE PLANE OF VIBRATIONAL SYMMETRY (YZ)

A5.2.1. SIMPLY ORIENTED MOUNTINGS

Let every mounting have either k. = k. or its axis parallel to X, Y, or Z. Let the

plane of symmetry be the YZ plane. Then the conditions for elastic symmetry are

lkyX=0, XkzX=0, XkyXZO, XkzXy=O

When these four conditions are satisfied, it is apparent that, of the six equations of motion in

Section A5.1.1., the second, third, and fourth contain only the variables v, w, and a, so that

these equations can be solved independently of the other three. Similarly, the first one and

the last two contain only u, /3, and y.

Equate the determinant of each set of three equations to zero.

yh-"2 0 -Xkv XkMA kXZ X y

] k7M.2k)1' y kY kX+~x 2 z
kZXZ _V XkzY 2+WkyZ2 Ix 2 , XYz no

Expansion of the first determinant gives the equation

(I ky -m C2 ) (Y. k 7 -m w2) (.kZ y 2 + I ky Z 2 -IXco 2 )

-X /Cy Z) (YkZ -mCA)(- ky Z)- (ky m o 2)(Y.kZ y) 2  0

After expanding further, the equation has the form of a cubic in co'.
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Introduce the notation

Pi L . kx, P2 V P3 z
4 r 2m 4 t72M 4 O!k

, = 1y 2 +kq 1 (kzX 2 +ykxZ2 ),Y7 =  tM rX 42MF (.kz/C Z Yz )  qZk A; 4Xtoy 2)

q3  ( XkyX2 + kxy 2) ..

4 rf 2m rZ2

in which rX, ry, and rZ are the radii of gyration of the body about the X, Y, and Z axes, re-

spectively, so that IX = mrY2, etc. Then the cubic equation can be written, after dividing

through by -64 n6rn 2 1X and replacing w by 2yff,

f-6 f 4 + C.f 2 
-I = 0

where

Bi = P2 + P3 + q,

C 1 =p 2 p 3 + p 2 '? +p 3q1  1 [(Ykzy) 2 + (XkyZ) 2 ]

(2 F)4 m2r2

0I 'p 2 pq 1 [p 2 (1k' y)2 + p3 (YkyZ) 2 ]

(2,7) 4 m 2 rX2

The roots of this cubic equation, which are necessarily real and positive, give three of

the natural frequencies of the body on its mountings. In each of these three modes of vibra.

tion only v, w, and a differ from zero.

If the roots of the cubic equaior are f12 , f2
2, f3

2 , then f 1" + f.2 + f32 . P2 + P3 + qI.

Further facts can be inferred from the following: Write qy - (YkzY) 2, gz .(kyZ) 2. Then,

if y = 9Z - 0, the rootb for f2 are P2, P3 , and q1 . If F(f 2 ) represents the function of f2

including D1 that appears on the left in this cubic equatior, then, when f2 is held constant,

p1 P 2 1 (p 3 - f2)
0 9 Y 16 174m2rX2  2 a9z 16 r4m 2 rX2

Now, when gy = gg - 0, the maximum root is the greatest of the three quantities P2 , P3. and

q," Then, as gy and gZ increase from zero, at the maximum rot /2 > P2 and aF/dgy < 0,

and similarly c9F/dg Z = 0; thus the curve for F(f 2 ) sinks, or does not move if P2 - P3 and

q1 < P2" It follo A since the slope of the curve is positive at the maximum root, see Figure
41, that the mF,.imum root increases progressively or, perhaps, does not change. Similarly,

the minimum root decreases or does not change. One root or the other, however, must change,
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unless P2 = P3  q,, in which case all three roots

for f 2 are equal to P2. Therefore, unless P2 -P 3 -q 1 , F .2)

the effect of gy and gz is to increase the difference
between the maximum and minimum frequencies.

At the middle root, on the other hand, the

slope of the curve for F(f 2 ) is negative; therefore,

increasing gy moves the middle root toward P2, f2

while increasing gz moves it toward P3'

Finally, the three roots can be equal only if

P2 w P3-q and also gy = Z = 0. For, from the
general relation between the roots of a cubic and Figure 41 - Plot of a Cubic Equation

it coefficients,

12 + f + + = + +q

f1 2 f22 + f,2 f3
2 + 2 2 f32 = CI = 2 P3 + P2 q1 + q3 q, - W

where W stands for the last term in the expression for 01 . If the first equation is squared and

multiplied by 2, and if 6 times the second equation is then subtracted from it, the result can be
written

(, 2 -f2 2)2 + (42- 3 )2 + (f22 -32)2 = (p2 -p 3 )2 + (p2 -q 1 )2 + (p3 -q1 )2 + 6W

Here W . 0. Therefore, f12 - f22 _ f32 only if p, 1  P3 = q, and W = 0.

The cubic equation can be solved by standard methods or with the help of a chart.* In
special cases the standard methods are easier. If P2 = P3 or if Y kyZ - 0, one root for f2 is

P2; if 5kZY = 0, one root is P3. In either case, a quadratic equation for the other two roots
can be formed from the cubic equations by dropping D1 and all terms that contain as a factor
the root already found, P2 or P3 , and dividing through by f2.

Similar treatment of the second determinant gives

/6 - B2/ + C2 f 2 - D2= 0

where

82 - P1 + q2 . q3

C 2 = P, q2 + p1 q3 + q2 q3 - -Y_ r X y )2

(2n) 4 mL2 72

+ L ( k Z )2 + 1 ( Y k x Y Z )2]
Y' 2 F.Y2 r z 2

4Figure 23.
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D =p q q q3  1 q2 (YkxY) 2 + _3 (IkxZ)2

2(2 - ()4 k2  r y2

P1 (I k x yz) " + 2 2(kx Y)(Ckx Z)(Ykx YZ)
r2 2 j (2 1t) 6m3 ry2 rz2

where p,, q2 , and q3 are quantities previously defined. The roots of this equation give the

frequencies of the three medes in which only the quantities u, 6, and y occur.

When all terms, except the first, are zero in both C2 and D2, the roots for f 2 are P

q2, and q3" In any case, the sum of the roots is f12 + f22 + f32 p P1 + q2 + q3. Further reason-

ing is complicated by the presence of the last terr in D2 . The other terms in C2 and 92 con-

taining X, as can be seen by reasoning as before, raise the upper root and reduce the lower

root, except that in special cases one root may not be affected. This effect becomes greater

as those terms are increased. The last term in D 2, if the product (Y kxY) (YkxZ) (YkxYZ)

is positive, lowers the curve for F(f 2 ) and thereby increases both the upper and lower roots,

with the opposite effect if the product is negative. Therefore, if this product does not vanish,

increasing the numerical value of £kxY or YkxZ or YkxYZ will lower the lowest root if the

product is negative, or will raise the upper root if the product is positive. The general effect

of these sums is to spread the roots farther apart.

The same general methods for solving this cubic equation apply as for the previous

one. As special cases: if all three of the sums occurring in C 2 and D 2 vanish, then the roots

of the equation regarded as a cubic in f 2 are p1 , q2, q3 ; if two sums vanish, whichever of the

quantities p1 , q2 , or q3 multiplies the third sum in D2 is a root; if only one sum vanishes, a

root lies between the two of the quantities p,, q2 , q3 that multiply the other two sums in D2.

These statements can be verified by writing the cubic expression as the sum of the product

(f 2 _ P1) (f 2 - q2 ) (f 2 - q3 ) and a remainder.

A5.2.2. INCLINED MOUNTINGS WITH ONE PLANE OF SYMMETRY (YZ)

When one or more mountings have unequal axial and radial stiffnesses and are not

parallel to a coordinate axis, the conditions for vibrational symmetry relative to the YZ plane

become vk X 1 =0, XZ -0

Xky X =kxy Y, kz X =IkXZ

IkYZX = ' kXT Y = YCXY Z

YkzX' + XkZY =ICYZ X k 1'Z

Y. /C Y y2 
=k YZXY + Yk x  YZ
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The zeros in the first determinant are now replaced by I kyZ, and skew force additions
occur in many other elements. The expressions for p 1 , P2, P3, B , and B2 are unaltered. The
remainder of the quantities in the two cubic enuations become

1 (1k 7 ),2  Y Xk 1 , 2 2/k. 7 YZ)

(' 2 n) 2 n! r 2
'73-- (Ik A- I 2 k.Xy2 - 2 :k.\ X X1 )

(2 02 ir r Z2

1 1P2 (7+ k X 2  k\.y 2 2XkxyX1')

(2 s)2 2 Z2

CI = P2 "3 +7 p2 2"1 + P3 +1 ?ISI S13+S2(2ff)4n2\r 2 r 2 3

1I=2/31 (P(2r)4r2  rX r 2 13 (2n) 6 m3 r 2

x A

C + q q2  S 2 1
2 + S2 2

2 + S 2 3
2

2 - P1q2 + ' 3 +(2n) 4 2  r.2 ry2  r 2 2

I s 2 1
2  S 2  S2 3

2  2S 2 1 S 2 2 S 2 3D2 P P12 q3 - q2 + q3 + P1 +
(2 rf) 4m 2  r 2 2 F2 2 2 2

?y (2Z) y f*_r

where

S 1 1 I - IkyZZ, S 12 = IkyZ - IkyZY, S 1 3 =IkyZ

$21 = kXY - Sk yX, $ 2 2  I kxZ - I.kXZX,

S2 3 =I .kXYZ + vkyz X 2 _ VkXZXY - YkgyXZ

The discussion of the roots of the equation regarded as a cubic in f2 follows the same

general lines as in the absence of the skew forces.

A5.3. TWO PLANES OF VIBRATIONAL SYMMETRY (XZ AND YZ)

A5.3.1. SIMPLY ORIENTED MOUNTINGS

Let each mounting have either ka = kr or its axis parallel to X, Y, or Z, and let both

the XZ and YZ planes be planes of vibrational symmetry. Then, by extension of the condi-

tions previously written for one plane, it is necessary that
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'ky X - -lk , -V = kX  Y =  Yk Z  y --  0

kzY kyXZ =YkxYZ = 0

;When these conditions are satisfied, the six equations of motion, Section A5.1.1., become

three independent pairs; one pair contains only u and/f, another only v and a, and the third

only ,v and y. The three pairs are

( ky - Mc2) t + (1 k yZ)a6 = 0

(~k~~u+(AjX 2 + %k 72 ) 2

C y- mc2)v V- (:E k Z)a =0

-(IkyZ) v +(.kzY2 + 2 1X )  = 0-

(. k7 - MCI 2 ) = 0

(" kl '2 + vk.\.Y2 - 2Z) y = 0

Eou9ting the determinant for the first two equations to zero gives the equation

Xk - mCO 2  kXZ
=0

kx.Z YkXZX 2 +kXZ 2- 1 1)

or in terms of the notation defined in Section A.5 2 1.,

f4 -(pl + 12 )/ 2 +)9 72 2 (1kxZ)2 =0
(2 ') 1 m 2 y2

and, b the usual quadratic formula, the frequencies for the two rocking modes in the XZ

plane are given by the enuation

f2 + [ I q2)2+ 4 (.kXZ)2]'; P 1+  92- (2 T)4 m2 p z

The second pair of equations gives

'i ky-mco2 -kZI-

X.k Z yk '±< 2 ~I
or

/f4 _(2 + 71)f2 + p2 qj - C (kZ) 2 -
(2 ,r)4 m2rX2
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and for the frequencies of the two rocking modes in the YZ plane,

1P2(2ff)
4  ?flt 2~ ~ Z 2

For the fifth equation, it may be assumed that w j 0 but all other five variables are

zero. Then,
Y'k Z - MoJ O 2 -o

and f.2 = 1
42 4rr2

where f is the frequency of a translational mode of vibration in the direction of the Z axis at

the intersection of the two planes of symmetry. Similarly, the last equation gives

f2 = 3 = 1 (kyX 2 + kx y 2 )
4 y2 m rZ2

for a rotationa! mode about the Z axis.

In the most important practical case, that of arrangements with base mountings, all the

mountings lie in a single plane perpendicular to both planes of symmetry. For this case, the

base-mounting chart, Figure 20, is useful. The relevant theory is as follows:

Let the distance from the center of gravity of the mounted assembly to the plane of the

mountings be D . Then Z = -D for all mountings, the Z axis being assumed drawn from the

center of gravity away from the mountings. Write

DX 2 =kZx

Then, using the definitions of p, and q 2,

YkxZ =-D Zx = -4rr2 mDz P1

q 1 (kzX 2 + kx Z2) 0 X Dz2

22OP!r'ik ty 2  y 2

and, dividing through by p1
2, the first quadratic equation becomes

2 02

(+) - + 2)_

FY2 ry p1  ry 2
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Therefore, if is the greater and 2mn the smaller of the two roots of this equation,

2nm f D X2 _Z 2  fna 2~ i 2 x2

P1  P1  ry2 t Py2  r2

and, as is seen after multiplying out,

-- 1 /  P1 ry 2

On the left in this equation, the second factor cannot be negative since then the first factor

would have to be a negative quantity of greater magnitude and the product would be positive.

Therefore

It follows that, if fm.,2 is substituted for f 2 in the quadratic equation and if Dx/r Y and

D/rFY are taken as coordinates on a plot, curves drawn for particular values of will

be hyperbolas.

Furthermore, if R =/ -rX
fmiln

by substitution for f... in terms of R in the preceding two equations

( 2)-nf D 2 D- DX2
(1 ~4 4- + 2I- =IL +! I2(~

P1  rY2 r 2 1i FV2

and, by elimination of 2

L2 2 L2

2 r 2\ R ry

Curves for a given value of R are, therefore, semicircles centered on the D /FY axis.

Finally, dividing the first of the equations of motion by Y kx or 4 r 2rnpl, and substi-

tutingZ =-D z

I- ) u - 8D z =0, hence-- -
p1  P1

Substitute this expression for f 2 /p 1 in the quadratic equation and multiply through by u/P

4 _ _ . _ __<, _ I =0

r Y y2  \ y ry
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Therefore, if curves were drawn on the chart for a fixed value of u/t3 ry, they would be'circu-

lar arcs centered in the Dz/ry axis; see Figure 20. The sarre arc would represent

u/f ry = aI > 0 and u/flry -1/a 1 . Since f 2n/p '- 1, it is evident, that for vibrations at

frequency fnin I U/fl ry > 0, the vibrations with u/fl ry < 0 must therefore be those at frequen-

cy fmax

A similar analysi. holds for rocking motions in the YZ plane; ry is replaced by rX,

P1 is replaced by p2 , u/8 r. by (-v/arX) and DX by Dy where

D 2  1 zY

y2LL

A5.3.2. INCLINED MOUNTINGS WITH TWO PLANES OF SYMMETRY (XZ AND YZ)

When one or more mountings have k.a ;' k r or are not parallel to a coordinate axis, in

addition tn the requirements stated in Section A5.2.2. for symmeLry relative to the YZ plane,

the following conditions must be met to secure elastic symmetry relative to the XZ plane as

well: Zkyz ;0

Xkx}" =Ekx},X

1 kzY I=kyzZ

Ikx YZ + I kyz X 2 = XZY +kxyXZ

The formulas for the frequencies are:

For the rocking modes in the XZ plane,

/2 Pl+q2 - 1 -72)2 + 22m (Ikx Z YXzX)2]

where
P =  1 Ykx, q2 1 (ykzX 2 +YkxZ2 _2XkxzXZ)

(2,r) 2 m (2 ,)2 M f .2

For the rocking modes in the YZ plane,

S[P2 +q 1 - (p 2 -ql) 2 + (yZkl
(2 n)4 n2 rX2  

_ 7

where

PC Y, q I Z2-2 1k yYZ)

(2,r) 2 m (2,7) 2 M rX2
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For translational vibration parallel to Z, as before, /2 oP3 , ut for the rotational mode about. Z

f2 -= ( (.-ky X 2 +Zk Y 2 -2ZkxyXY)

(20, 2

The Base Mounting Chart. is not usually applicable to arrangements includirg inclined

mountings.

A5.4. THREE PLANES OF VIBRATIONAL SYMMETRY

A5.4.1. SIMPLY ORIENTED MOUNTINGS

Let everN mounting have either k. = k, or its axis parallel to X, ', or 21, and let the

X Y, XZ, and YZ planes all be planes of vibrational . ymmetry. Then the conditiun:" for elastic

s ymm etrx are

IV . kZ, ik . Y N-k7 I= ! kA . = ;k-, =Z = 0

- z. )' .\I1 = 1lkx YZ = 0

When these sums are all made zero in the frequency equations, Section A5.1.3., only

Lhe rirst io t.erms remain in each equation. Therefore, each of the six modes of motio., is

either translational or rotational. B permitting in turn only u, v, w: a , 19, or y to be differ-

ent from zero and solving for f2, the following values are found for the frequenc'es of tie

three translational and the three rotational modes of vibration.

f21 k X' /22= 1 c f2 _ I_
/2_ 1 kx f=_.__IXkr, f] 1 xkz

(2ff) 2 m (2) 2 m (2f ) 2 m

I_ k (.kzY 2  kyZ 2 ), f2 _ 1 (XkzX2 +kx Z 2),

(2 7)2 1X  y

/ 2 X 2 yl kX z 1xX , 2)

A5.4.2. INCLINED MOUNTINGS WITH THREE PLANES OF SYMMETRY

Wher at least one mounting has either k. 0  kr or its axis not parallel to a coordinate

axis, in addition to the conditions for the XZ and YZ planes as stated for inclined mountings

with two planes of symmetry in Sections A5.2.2 and A5.3.2, the following conditions must be

met to secure symmetry relative also to the XY plane:

IX Z =IkXZ Ik y Z-.IkY1
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The formulas for the translational frequencies fl, f2' f3 as just presented for simply oriented

mountings are unaffected by the inclination of the mountings, but the formulas for the rotation-

al frequencies become

(2 = 1 (ykzy 2 +EkyZ2 2YkyzYZ) y2 y

(2-)2 1x
(2 = 1 (VkzX 2 +2kxZ 2 _.21.kxzXZ)

(2w) 2 Iy _
1= k2  Z2 _2 XkxY XY)

(2w) 2 1z

A5.5. OBLIQUE CENTER-OF-GRAVITY ARRANGEPENTS

It can happen that special features of an arrangement, although not giving rise to an

additional plane of symmetry, nevertheless greatly simplify the formulas for the frequencies.

One important practical case, which includes two distinct subcases, will be treated.

Let the points of attachment of the mountings all be in a plane containing the center

of gravity of the mounted body; let this plane, although containing the X axis, be inclined at

an angle 0 to the Y axis. Thus two of the principal planes of inertia are inclined to the

plane of the mountings. If mountings having unequal axial and radial stiffnesses are present,

let their axes at least be perpendicular to the X axis, so that kxy = kXZ = 0 for all mountings.

Let the arrangement be such that vibrational symmetry actually exists relative to the

YZ plane and would also exist relative to the XZ plane if all terms containing Z or kyz

were replaced by zero in the conditions for symmetry relative to XZ, that is,

YkxY f Y - kzY=O, ,&zXY=0

in addition to the conditions for YZ symmetry with inclined mountings as stated in Section

A5.2.2. Note that here kxy = kxz - 0 for all mcuntings. Since also Z - Y tan 0 for each

mounting, it follnws also that

Ykx ZkzZO, EkZXZ-O

Case 1: Assume also either that all the mountings have equal stiffness in all direc-

tions, so that ky a kZ and kYz - 0, or that the mountings, N in number, are identical and

have parallel axes. Then the following additional equations hold:

CYY- Y ZX-kYZ Y = 0, 1kYXY Z -uXY0

YkyZ = "kyzZ -0, YkyXZ W IkyzXZ- 0

On the second assumption these equations hold because all k's cancel and the equations

state nothing new.
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The equations of motion, Section A5.1.1, now give, for solutions containing sin wt,

(Y. x - M 4)2 ) u =0

(IkY - mW2 ) v + (1kyz) W -0
(5"k -m n . 2 ) W +(IyZ) V

[Ykz y2 +(- kY 2) ta 2 -2(XkyzY 2) tan - = 0 V 0

[Y kz X2 + (a iX y2) tan2 0 - 2 - [(kx Y2) tan + kyzX 2 ] = 0

(1(k VX 2 +kxY 2 ) - Iz 2]y[(ykxY 2) tanO + Y! k YZX 2 ]p = 0

The equations are solved for the six frequencies; the last four give two quadratic equations

for co2

Case 2: Instead of the additional assumptions of Case 1, let it be required, in addi-

tion to the previously stated conditions, that

Yky£AzX=O, XkYXY = 0, V£kyzXY =0

whence it follows also that

ikyxZ=0, Ykyzxz =0

Then the equations containing u, 8, or y are the same as in Case 1 but the other three are

as follows:

(Iky-Mn 2 )v +(2) kyz) r -[(kytanO-kyz) Ya= 0

(XkZ - ~) w+(Xkyz) v -(Ykyz Y)(tanO)a 0

[Ykz Y2 + (Mk Y 2) tun 2 6 - 2(kyZ y 2 ) tanO - /Xv2]a

-X[(kYtan0-kyZ)Y ] v -( ky z Y)(tanG ) w =0

These three equations lead to a cubic equation in (, 2 like those encountered with only YZ

symmetry and can be treated in the same way.
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APPENDIX 6

PRACTICAL ARRANGEMENTS OF INCLINED MOUNTINGS

The equations of motion and the general conditions of elastic symmetry of arrange-

ments of inclined mountings were given in Sections A5.2.2, A5.3.2, and A5.4.2. Possible

practical arrangements will be discussed here. Some further remarks will be made on vibra-

tional symi,,etry and or. specific cp.es of arrangercnts for three, two, and one planes of vi-

brational symmetry. Arrangements of inclined mountings with equal axial and radial stiff-

nesses are included in the cases treated in Chapter 3.

A6.1. VIBRATIONAL SYMMETRY WITH INCLINED MOUNTINGS

Let a mounting have axial and radial stiffnesses k. and k, respectively, and let its

axis make angles (., 6y, 6Z with the X, Y, Z axes, respectively, where

cos 2  os2 + cos + cos 2 6 z = 1. Then, for this mounting,

kX= ka cos 2 V K,, sin 2,6 X, kxy =(k/-kr) cosx cosky

Similar formulas for ky, kz, AXz, kyZ can be found by changing either Y to Z or X to Y or Z.

Note that ~yx = .kzxX = kx, kzy = " A small displacement u of the equipment

toward positive X causes a restoring force k., u on the equipment directed toward negative X,

and also skew forces A.,y u, ky "z u directed toward negative Y and Z, respectively. If the

axis of the mounting lies in the AXY plane, then cos y = sin (hX, cosg z 0, and

,tkkz  kvz = 0, and similarly for other planes.
To secure geometrical or mirror symmetry relative to a given plane when k. g k., any

mounting and its image mounting must have their axes on lines which are mirror images of

each other in the plane, e.g., either 2a or 2b for the image of 1 in Figure 42. If the X axis

is drawn perpendicular to the plane of symmetry, and if OX, Oy" 'kZ refer to a mounting and

6 , , 6 to its image, then = - 5X ,  y 0 = Z = so that cos 0' - - cos .OX,
cos Cosy, c os cos =CO z', = -k:yy kZ - kXZ.

Vibrational symmetry can exist, however, without geometrical symmetry; a few cases

will be mentioned. The general conditions for elastic sn-imetry for inclined mountings are

too complicated for practical use. The difficulties of allowing for the effects of inclination

of mounting axes to the principal axis of inertia of the mounted equipment is the principal

advantage of using mountings parallel to the inertial axes, or, if they must be inclined, using

mountings with equal axial and radial stiffnesses.
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k2a 95 0 7
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Plane of . 3 4
Symmetry a 1

!0 -6

Figure 42 -Mirror Image of an Figure 43 - Inclined Mountings with Axes
Inclined Mounting Lying ;n the XY Plane

A6.2. ARRANGEMENTS OF INCLINED MOUNTINGS WITH THREE
PLANES OF VIBRATIONAL SYMMETRY

Inclined mountings with k. ;' k. in center-of-gravity arrangements with three planes of
vibrational symmetry lead to great complications unless their axes all lie in the plane of
attachment of the mountings. Even then, the only practical design seems to be the insertion

of groups of four mountings, all in a group being identical and so located and oriented that.
each has a mirror image of itself in both of the two planes of symmetry that are perpendicular
to the mounting plane. The locations and orientations ci the four, if they are in the XY plane,
see Figure 43, can be written

X1= -A, YI=-B, 'x =0, C6 y
2

X 3 -A, Y3 = B, cX-0, cy =.+0
2

X 4 = A, Y4 = B, 4,x - r - 0 , oy 2
2

In such an arrangement, for each mounting

kx =kacos2 0 +k .sin 2 0, ky=kasin2 0+krCOS20

k z  a kr

while kX/A has the same sign asXY(ka - kr), and IkXyl = I(k. - k,)i sin 0 cos0. Also

9z and kxz kyZ= O.
The frequency formulas for such arrangements are the same as those given in terms of

kX, ky, kz in the normal arrangements, Section 3.2.1.
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A6.3. ARRANGEMENTS OF INCLINED MOUNTINGS WITH TWO PLANES
OF VIBRATIONAL SYMMETRY (XZ AND YZ)

In arrangements with two planes of vibrational symmetry, inclined mountings with

unequal axial and radial stiffnesses can be introduced readily only in groups of four, the

members of each group being identical and arranged so that each has a mirror image in each

of the two planes of symmetry. The image must correspond both in the position of the mount-

ing and in the orientation of its axis. The positions and orientations for a group, see Figure

44, can be specified in terms of arbitrary numbers A, B, and arbitrary angles of a, s radians

as follows, the planes of symmetry being the XZ and VZ planes:

X 1 = - A, Y 1 =  - B '  SX =  C, 5y = 0; X 2  = A, Y2 = - B '  , X- O j3 k.-

X3 =-A, Y3 = B, 0'X=, 0 Y = -i; X4 .- A, Y4 " B, OX"- q51 - -

The values of Z, SZ, kx, ky, and kZ are the

same for all members of a gro:p, whereas those j
members having equal and opposite X have also

equal and opposite values of kxz, and ky Z

changes sign similarly with Y and kxy with X]'.
If at least some of the mountings have

their axes parallel to a coordinate plane, further / -X

generalization may perhaps be accomplished 1 2

easily without destroying the symmetry. If any

two identical mountings have axes parallel to

the YZ plane, so that Ox - i/2 and

kxy -kxz = 0 for both, and if these mountings

have the same values of X 2, Z, and OZ but Figure 44 - Orientation of Inclined Mountings-Two Planes of Vbrational Symmetry

have equal and opposite Y and cos 0 y, and

hence also equal and opposite k yZ, then the elastic constants of these two mountings may be

changed in any common arbitrary ratio n provided X is simultaneously ,2hanged for each in the

ratio 1/n. Note that for the two mountings X may have either the same value or equal and

opposite values. Similarly, if the axes are parallel to XZ, so that kxi, = k z - 0, and if

y 2, Z, and ckZ are the same but X, cos 0x, and, hence, k XZ are equal and opposite, then the

elastic constants may be changed in the ratio n provided each Y is changed in the ratio 1/n.

The general conditions for two planes of symmetry with inclined mountings were stated

in Section A5.3.2.

For any of the arrangements just described with two planes of symmetry, the working

formula for fa,, stated in Section 3.3.3 for noncoplanar arrangements atill holds, but here
3.13 1 (12+ X

lotZ y 2- x 22kXyXY)
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The formulas for and fL as there stated in terms of Lx and Ly also still hold as well
as those for P 1 and P 2, but here LX, Ly, Q,1, and Q2 have the values:

For thp XZ rocking modes,

LX = I- 2 y (kX Z-y kxzX)2

V(=2 + 2 r Yi2

(12 -L 2 (YkzX 2 + kx Z2 - 21AkXZXZ)

For the YZ rocking modes

L i + (kyZ -rI kz Y)
2

V\2/ w2 X 2

(Ykz Y2  kYZ 2 - 21kYz YZ)
W r

A6.4. ARRANGEMENTS OF INCLINED MOUNTINGS WITH ONE PLANE
OF VIBRATIONAL SYMMETRY (YZ)

The general conditions for vibrational symmetry relative to a single plane YZ are too

involved for practical use; see Section A5.2.2. Mention will be made only of certain methods
for designing such arrangements including inclined mountings with k. # k?.

Of the procedures listed in Section 3.4, Nos. 1, 2, and 4 can be used for any inclined

mountings whose axes are parallel to the YZ plane; No. 3 can be used provided also kyzx

has the same value for both members of a pair.
Complete geometrical symmetry with respect to the YZ plane is always sufficient; the

mountings are then located in pairs. The members of a pair have equal and opposite values
of X, supplementary values of O'X and the same values of Y, Z, ky, 02; therefore they have
equal and opposite values of kXy and kxz but the same kyz.

The frequencies f, to f6 are obtained by solving the two cubic equations given in
Section 3.4 or A5.2.2 with the values of B , C1 , DI, 32, C 2 , D2 as given in Section A5.2.2.

The formulas may be converted into a numerical form like those in Section 3.4 by substituting

1 9.78 1 95.6

4 2 M W (2n')4m 2  W2
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A6.4. 1. OBLIQUE CENTER-OF-GRAVITY ARRANGEMENTS

Sometimes it is not convenient to have the mounting plane coinci e with a principal

plane of inertia of the equipment. It may happen that only one of the principal axes is hori-

zontal, or it may be more convenient to incline the mounting plane. Then only one plane of
vibrational symmetry will exist, and the methods of Section 3.4 can be employed in design

and in the calculation of the frequencies. In special cases, however, the problem is simpler
because of certain other features; several such cases will be given separate treatment here.

With the axes taken as usual along principal axes of inertia of the equipment, let the

plane containing the points of attachment contain also the X axis but be at an angle 0 with
the Y axis. Thus the mounting plane contains only one of the principal axes of inertia.

Since it may be desirable to have the mounting axes perpendicular to the mounting

plane, any mounting with unequal axial and radial stiffnesses will only be required to have
it axis parallel to the YZ plane. Then for any mounting kxy = kXZ = 0. Furthermore,

Z = Y tan 0 for all mountings; the origin is at the center of gravity.

Vibrational symmetry will be assumed to exist relative to the YZ plane, and it will

also be assumed that both the YZ and the XZ planes would be planes of vibrational symmetry,
if Z and kyz were made zero for each mounting without other changes. This necessitates,

in addition to the requirements for YZ symmetry stated in Section 3.4, that 1kxY = 0,

1 IZY = 0, ,1 kZA'Y = 0,
Two cases will now be treated.

Case 1: Assume in additiun either

(a) that every mounting has equal stiffness in all directions, so that kyz = 0, or

(b) that the mountings are identical and have parallel axes so that kYz has the same

value for all.

Under these conditions two translational modes occur in the YZ plane but probably not

in the Y and Z directions, and two rotational modes occur about perpendicular axes in this
plane. The frequency formulas for this case are:

For translation in the X direction,

ftr = 3.13f- k

For rotation about X,

f = .1F Z Y2 + (Ik Y Y2) tan2 0 - 2kY y 2 ) tan 01

For translations in certain directions in the YZ plane,

f = V'p L, L 2 V'- ) a2

122



w here ..8
4-89 1 k89 kZ a97 kyZ

Wk1

For rotations with axis in YZ plane,

f = 'p' q'-+ L , L (f-4) 2 *+ s2

where

p,_ 1.29 2[YkZX + (YkxY 2 ) tan 2 0]
Wry2

q,- 4.89_ (kyX 2 + Ykxy 2 ).
IVr2

Wry ( .kxY 2 ) tanO+ YkyzX 2 ]Wry rz

Here 3.13 T/ v2it, 4.89 = g/(2 ")2, 9.78 -- g/(2 ,) 2 .

2

Case 2: As an alternative to Case 1, it may be assumed, in addition to the require-

ments previously stated, that the mountings are arranged with mirror symmetry relative to the

YZ plane, so that each one is matched by another with equal and opposite z but the same

values of Y and Z and of the elastic constants including kyz. Or, more generally, make

IkyXY - kyzX = %kyzXY =0

The formulas for fi, and for rotations with the axis in the YZ plane are the same as

i i Case 1. The other three motions are rocking modes, the frequencies being roots of the

cubic
f 6 f 4 + Cf 2  D - 0

where

B - P2 + P 3 + q

95.6 ...66k 1tan8 Yc~ tanO_+k + (k y y)2tan201
=P2 P3 +P2 qI +P3 q 1 95.6rJ (1ky tan0

L9= P2 P3l -2 (Yky Y tan 0-Ikyz) + ql(lkyz ) 2  _ r (%kyzy g)t&02

2 p1~q -
2  Yx YZZ

LS7_o (Ikyz)(Ikr z 11 (Y.Ry Y)tan6- Ykyz YOrf X 2



01 .78[y C Y 2 +(Y.ky y 2 ) tan2 62 (Y.k Y Zy 2 ) anlO

Here 9.78 =g/(2 I) 2 , 95.6- 2 /(2r) 4 , 1870 2 9 3 /(2 I) 6 .

For discussion and mrethod of solution of the cubic equation, see Section 3.4.
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APPENDIX 7

DESIGN WORK SHEETS FOR COMMON CASES OF MOUNTINGS

Sample work sheets are presented for calculating the natural frequencies and the

required clearances for resiliently mounted equipment. These work sheets offer arrangements

that minimize the repeated writing of numerical values and the amount of desk calculator com-

putation. The sheets are offered as a convenience for those who are just starting work in this

field and who have available only desk calculators. It is recognized that other forms may be

more convenient under certain circumstances and that those who use electrical computers

must code the problems to suit the particular machines.

A proposed design work sheet is presented for base mounting arrangements with two

planes of vibrational symmetry, YZ and XZ, using the calculations of Problem 2, Appendix 2.2,

as an illustration. Another proposed design work sheet is presented for braced mounting

arrangements witf, one plane of vibrational symmetry, YZ, using the calculations of Problem

,, Appendiy 2.3, as an illustration.
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BASE MOUNTING ARRANGEMENT - TWO PLANES OF

VIBRATIONAL SYMMETRY, YZ AND XZ

DESIGN WORK SHEET FOR NATURAL FREQUENCY AND CLEARANCE CALCULATIONS

1. SHIP: 2. COMPARTMENT

3. EQUIPMENT LOCATION: Frame No. Port Side - tbd. Side -

4. EQUIPMENT: Name - _od. No. -_-.-_Ser. No.
Wr. Dwg. No.
WEIGHT: Equipment 7500 lb -Subbase - Totl 7500 lb
Speeds or Exciting Frequencies of Equipment

5. FOUNDATION DWG. NO: BuShips Shipbuilder

6. SKETCH OF MOUNTING ARRANGEMENT:

Plan

~~68" -- ,

34" - ____g. Y

P X
Side End z 1

Dz=61T___
y - - 4

-- -- s4"------ -17"-+ 1"

RECOMMENDATIONS:
Use four 2000-lb mountings located at DX = 10 in., DY, = 18.6 in., Dz = 6.0 in.

Calculated from Static Load-
Clearances Calculated from Shock Data Deflection Data

Cy z  2 5/16 in. 13/8 in.
CXz 3 7/16 in. 2 in.

Vertical 1.0 in. 0.6 in.
Horizontal 1.0 in. 0.6 in.

CALCULATIONS BY: ACTVITY OR SHIPBUILDER:
APPROVED BY: DATE:

DESIGN NUMBER:
SHEET 1 OF 4
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NATURAL FREQUENCY CALCULATIONS

Frequencies to be avoided: 24-cps excitation by ship

40-cps excitation by equipment

KNOWN DATA

Weight 7500 lb !X  8.66 x 103 lb-in.-sec 2  rX 21.1 in.

Length 68 in. ly 4.37 x 103 lb-in.-seC2  ry 15.0 in.

Width 34 in. Iz 9.36 x 103 lb-in.-sec2  rz  21.9 in.

Height 24 in.

SELECTION AND CHARACTERISTICS OF MOUNTINGS

First Trial Second Trial

2000-lb mountings 2000-lb mountings
for dead load of 1875 lb per mounting, for dead load of 1875 Ib per mounting,

natural frequency = 15 cps natural frequency = 15 cps

ka = kr = kr + ?r/2  ka = kr -r + 17/2

MOUNTING DEFLECTION: MOUNTING DEFLECTION:
from shock tests - D = E = 1.0 in. from shock tests - D = E = 1.0 in.
from static-load deflection tests - from static-load deflection tests.

0 = E = 0.6 in, .=£=0.6 in.

DYNAMIC STIFFNESSES OF MOUNTINGS

First Trial Second Trial

1875. (15)2 lb/in. Wf 2  1875 x(15) 2

9.8 9.8 9.8 9.8

CALCULATION OF TRANSLATIONAL FREQUENCY

First Trial Second Trial

f,3.13 6.26 ,tr 3.1 3  
- 6.26

=6.6 / = 15 cps = 6.2615 cps
77500 " 7500

SIIEET 2 OF 4
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CALCULATION OF ROCKING FREQUENCIES IN YZ PLANE

Half-Length of Base
First Trial Second Trial

1/2 _ 3- 1.61 1/ 2 1.61
21.1 1 r x  21.1

Z Distance from Center of Gravity to Plane of Mountings
First Trial Second Trial

DZ 6 0.284 Z- 0.284

rx  21.1 rx 21.1

Selection of Mounting Position
First Trial .Second Trial

L _ =1I= 1.60, D = 33.8 in. DI = £L = 0.88, DY = 18.6 in.rx 2.1 Yr x  21.1

Rocking Frequencies in YZ Plane
First Trial Second Trial

Sfrml(Chart =.1 i _0 9 7 5  14.6 cps f.in f = 0.8, fin = 12.0 cps
Fi 22)= z 15.0 =,' 15.0

fm ,x /Chart - f"2 x = 1.65, = 24.1 cps ma1 f . = 14, f.&X 16.8 cps
f tn\Fig 22) 14.6 fmin 12.0

CALCULATION OF ROCKING FREQUENCIES IN XZ PLANE

Half-Width of Base
First Trial S econd Trial

u!/2 17 113 w/2 17 1.13
ry 15.0 r 15.0

Z Distance from Center of Gravity to Plane of Mountings - See Above Selection of
Mounting Position

First Trial Second Trial

DX DX =.c, DX = 15 in. Dx D X = 0.67, Dx 10 in.
ry 15 Jy 15

Rocking Frequencies in XZ Planu

First Trial Second Trial

fmi gChart = f, 0.82, fmm. = 12.3 cps f. "a, fmir _ 6, fmi, = 9.0 cps7-F7 22/ 15.0 5.0

j m x (Chart,) 1.50, fm, :18.4 cps 1.9, 17.1 cps
'I 1,n Fig 22 12.3 frMin 9.0

SHEET 3 OF 4
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CALCULATION OF ROTATIONAL FREQUENCY
First Trial Second Trial

.o13 3 1JI7/- (1kyX2 +ykx y2 ) - 3.13 /. (yk 2 + 2xY,
?z rz

6.26 y + 21'2) 6.26 I (X2
(X6 (X + y2rz  IV rZ  V

-6.26 3i 0 ( [15) 2 (33.8) = 25.2 c, =s i.26 j 000 (10)2 + (18 .62  14.5 cps

21.9 ' 7500 21.9 V 750

SUMMARY OF RESULTS
First Trial Second Trial

- 15.0 an., D = 33.8 in., dz = 6.0 in. DX= 10 in., Dy-- 18.6 in., DZ= 6.0 in.

= 15.0 cps ft = 15.0 cps

f, jn,X = 12.3 cps, mex,X = 18.4 cps fmin, X= 9.0 Cps, i.x,X = 17.1 cps
f.,., I. = 14.6 cps, 1, = 24.1 cps f,,n, y = 12.0 cps, f..al, Y=  16.8 cps

et 25.2 cps /rot = 14.5 cps

CLEARANCE CALCULATION,)

Approximate Formula: C = 2011 + E - See Section 1.6.
S

C = Clearance for Movement of Point 1 Shown on Sketch
First Trial Second Trial

Shock Test Data Static Load Shock Test Data Static Load
Deflection Daita Deflection Data

D- l.0i . ,= 1.0in. V= 0.6 in. E=0.6in.
H =24 in.

Y'}Z  = 37.2 in.

PXz = 20 i n.

2 x .0 x_ 2x0.6x 24
CYZ xlO 24 +1.0 Cyz  37.2 0.6

= 1.29 , 1- 2.29 =0.78 + 0.6= 1.38
Call 2 5/16 in. Call 13/8 in.

c=2'j~2 4 +i~o c _ 2x0.6x24+0.C z  2xl.0x24 + 1.0 CXz M.04 + 0.6

=2.4 + I = 3.4 -1.44 + 0.6 = 2.04
Call 3 7/16 in. Call 2 in.

z 2_37/16" maxClearances: 1.0" max 0.6'' an 2 /6 mx _... 37/6 maxn

25/16"max r,,..,- Z 2 mmin
l3/" 1i I; | 1 11 3/8" in -63/8" ain-- 3 7,16 m7 1 - --

1 . 2" nun , I ' 24"'
,r -- 9

-T ~-1.0" max ,0.6 ain.<. ,4, . .

1.0'' max 0: <.. 6 min
mn" :"6"- 1--- -- 18.6'' 10"---- -- " L--L-u1.0" max
min 10.6" nitn

SIIEET 4 OF 4
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BRACED MOUNTING ARRANGEMENT -ONE PLANE OF
VIBRATIONAL SYMMETRY, YZ

DESIGN WORK SHEET FOR NATURAL FREQUENCY AND CLEARANCE CALCULATIONS
1. SHIP: 2. COMPARTMENT

3. EQUIPI.ENT LOCATION: Frame No.- Fort Side _Stbd Side

4. EQUIPM.ENT: Name Trim Pump and Motor Mod. No. Ser. No.
Mfr.__ Dwg. No.
WEIGHT: Equipment 2035 lb Subbase Total 2035 1b
Speeds or Exciting Frequencies of Equipment

5. FOUNDATIOY DVG. NO: BuShips__ Shipbuilder

6. SKETCH OF MOUNTING ARRANGEMENT:

Side End Plan

I :ZlZ

i
C"F

17"

B4.114 - 4 Y 4 6" 1a--I

40" 22"- - -

6" '- --- e-" 6'' 6

RECOMMENDATIONS: Use four 550-lb base mountings and two 50-lb back mountings whose
locations are shown on page 131 under Selection of ,Iuunting Positions.

Calculated from Static Load
Clearances Calculated from Shock Data Deflection Data

C . z  1.1 in. 0.7 in.
C z 1.1 in. 0.7 in.
Vertical 1.0 in. 0.6 in.
Horizontal 1.0 in. 0.6 in.

CALCULATIONS BY: ACTIVITY OR SHIPBUILDER:
APPROVED BY: DATE:

DESIGN NUMBER:
SHEET 1 OF 7
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NATURAL FREQUENCY CALCULATIONS

Frequencies to be avoided:

KNOWN DATA

Weight 2035 Ib Ix 2150 lb-in.-sec2

Length 22.0 in. l¥ 2150 lb-in.-sec 2

Width 22.0 in. I z  321 Ib-in- sec2

Height 84.5 in.

SELECTION AND CHARACTERISTICS OF MOUNTINGS

First Trial Second Trial

550-1b bottom mountings
50-lb back mountings

for 550-lb mountings, f.=4= 16.7 cps
for 50-1b mountings, 1f6r = 1.0 cps

ka = r,= kr + r/2

MOUNTING DEFLECTION:

from shock tests 1.0 in.

from static load deflection tests 0.6 in.

DYNAMIC STIFFNESSES OF MOUNTINGS

First Trial Second Trial

k 2  k wf 2

9.8 9.8

for550-Ibmtgs k,=kr 484 (16.7)2 = 13,860
9.8 lb/in.

for 50-b tgsk44(160) 2  = 1150fo 5-I a= I9.8 b/in.

SELECTION OF MOUNTING POSITIONS

First Trial Second Trial
%1Itg XI Y Z kx Ac k, Mtg X -. x

1 +6 -6 -40 13860 13860 13860 1-2 ;+6 6+_ -40 38 O_ 1380_ 13860 3°.
6-6 _6136 13860 -

4 -6 -6 -40 13860 13860 13860 4 1

' } 6 -+ . 17l . 0 11 0 15 5

6 6- +6 +17 1150 1150 1150 6 "-
7 } 7

-o __ __ .-l- - - i~ io .t.

- I W~~ 101 __
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CALCULATIONS FOR al, bl, c, and a2 , b2 , C2

Radius of Gyration

First Trial Second Trial

rX2=.Lx L--10 407.8in. 2  x2 /XA 5.272 m

ry 2 . y 2150 = 407.8 in.2 lY2 .
m 5.272 m

z2 .. __L. 60.89 in.2  2 '2
M 5.272 m

Summations________
-Smain First Tripl Second Trial First Trial , Second Trial

I 1  --8.160 104 k ly 0.4896 . 106
* 8.160w 10, 1......k 2 Y 2  k2 2 0.4896 x 10

k4 V4 8.160 x D1 0 k4%y2 0.4896 - 106

VY4  -8.16O10' ____ 0.4896 106

kSY, .0.690 1 I0_ ks1; 0.0414x 10 _ _

k6 . 0.690 104 - k 1, 2 0.0414 . 106

kY k , 2  
__7

k_ _
s  

k ___

/eg y 9  k g y 9 ,.

k, V * 2ic 10 to_______

X k Y 1.380 . 10' 1 kY2  2.041 . 106

(Y- k ;2 1.904. 10'

k Y2 0.4895 106 kty1 Z l  32.64x 10
' " 0.4896 106 '  k 2 y 272  32.64 . 105 _

k0 3 0.4896 ,.'106 k3 Y3 Z3  32.64 . 10'-'

4 0.4896 1o6  k4 V4Z 4  32.64 . 105 i

ks S2  0.0414 * 106 ksy6 S 1.173 x 10b

5sx ________ , ,zk6- 6-.41 0 k6y 6Z 6  1, 173w x10'

k 2  k9Y97 9
-cX 71 7

k 0 to t0 1o0 10 '0

Xk) 2  2.041 106 -k YZ 2.34S x 10 _ _

(Yk 'Z)2  5.504 1010

k Zt  -5.440 x lOS  k 1Z 2.176 . 10'

k27.0 .z._ -5.o 4 x105 A,.27 2.176. 10 7

ka7 3  -5.440 .105 k]_ _ 3 2.176. 10'

k47 4  -5.440 l _ _ _ __ 2.176. I0CP _

.s 0.196 1 __
s  s__ 0.033 w 107

k Z ..0196 < 1
s  k6 . 0.033 - 0

kz .0,196 10 k.70 10'

7'" k)

SIEET a0F 7

k.32



CALCULATIONS FOR pl, P2. P3 and q, q2 , q3

First Trial Second Trial

9.78 k A: 9.78x5.670 104 4 2.722x 102
' it' ~2035...--

P2 = 9.78 = 2.722x 102

P 3  9.78 - z =2. 722x 102

-7 9.78 [zkZ1,2 + YkxZ 21 9.78 2.04x106+8.770x107
]

9 rx = 1.056 10 '

q2 =-7 [IczX2 + kxZ2] =v = 1.056x103

wry2

9..8[ X 2 +. kxY 2  9.78 [2.041xj06 +2.041xI06]
73 wrz 2 Y +

0 35 x60.8 = 3.219 x 02

CALCULATIONS FOR B 1 9 C1, 01 and 82f C 2 , D2

81 P 2 + P3 + 1

First Trial

81 = 2.722 x 102 + 2.722 x 102 -, 1.056 x 103 . 1.600 x 103

Second Trial

C 1 =P 2 73 + P2 q1 + P3 q 1- 15. [( kzy) 2 + (1kyZ) 2 ]

First Trial. 95.6
C1 2.722x 102 x2.722x 102+ 2.72210 2x 1.056x I03+2.72x 102x 1.056xI' 10 03 ?x4078

Second Trial x [1.904x 108+4.567x10121 = 3.904xi0 s
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VI= p2 p3 q1 _ 95.6 (p,(!kzy) 2 + p3 (EkyZ) 2 1
W2 r 2

First Trial
95.6

2.722x 102x2.722x 102x 1.056x l- 4 [2.722 x102x 1.904 x 1O+ 2.722x 102 x4.567x 10]
(20352x 407.8

=7.89 x 106
Second Trial

B2 = p4 + q2 + q3

First Trial
B = 2.722x 102+ 1.056x 103+3.219x102= 1.650 x

Second Trial

C2  p, q2 
+ p1 q3 + q2 q3 -I2 5  -L ([k1y ) 2 + -L(YkxZ)2 +  (YkV y Z)

w*2  I 2 2 fy2f2

First Trial C 2 = 2.722x 102x 1.056x103 + 2.722xI02x3.219x 102 + 1.05S6x 103x3.219x 102

95.6 (1.904 x 108) 1L 0( 1_° .+ - (4.567 x 10 12) + (554 = 0 4.561 x 10-'
-(203W) 6.8 40. T7.8 (5.50x10

Second Trial

D2 -P1 72 q3 --- k~Xy)2+-I (YkZ) 2 , PI (lkYZ)2] +, 187 (YkY)(YkZ)
W2 Lt  J y2 W 3fv 2r.z 2

x (YkxYZ)
95.6 r1.056x10 108

First Trial P 2 = 2.722x102xl.056x103x3.219x102-(-2 i (1.904 x 10 )

( 60) Lp.89

3.219x 102 (4.567 x 1012) + 2.722 x 12 (5.504 x 1010) + 180 _ (1.380 x 10) (- 2.137x lO
407.8 6D.89 x 40 7.8 j (235 .89 407.81

Second Trial x (2.346x 105) = 9.12 x 106.
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Constants a, b, C and a2 , b2 , C2

YZ Plane First Trial Second Trial

a1  3.904 x 10s  0.153

B 12 (1.600 x 103)2

D 7.89 x 106 0.00193

2 B 3 (1.600 x 10 3)3

CI = = 1.600 , 103

Other

a C2  4.561 x IOs
a2 = =0.8

822 (1.650 x 103)2

_/2 9.12 x 106
B23 (1.650 x 103)2

c 2 = B 2  
= 1.65 x 103

NATURAL FREQUENCIES OBTAINED FROM CHART, FIGURE 23

First Trial Second Trial

YZ Plane Other YZ Plane Other

f, 36.0 cps f 4 
=  35.9 cps f, =  cps f4 cps

f 2 = 16.5 cps fS = 18.0 cps /2 = cps fs cps

f 3  4.7 cps f 6 = 4.6 cps f3 =  cps f6 cps
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CLEARANCE CALCULATIONS

Approximate Formula: C = Deflection of Mounting + a Factor
C = Clearance for Movement of Point 1 Shown on Sketch

First Trial Second Trial

Shock Test Data Static Load Shock Test Data Static Load
Deflection rata Deflection Data

Cyz= 1II=l.lin. 0.6+I =0.7 in.
8 16

Cxz +=1.1 in. 0.6 + = 0.7 in.
8 16

Cvertcal = I in. 0.6 in.

CHori = I in. 0.6 in.

Clearances

1.1" max
z Z 0.7" min

1. 1" max _1.1" max
0.7" min _ .- _L 0.7" mrain_ L

-I K...1.0'' max1
0.6" min L 1.0" max

0.6" m

17" I I I
X Y

84.5" /
,, 1

iI

40" I II

1.0" max :1.0" maxma2 -22" 06" 0.6" mn0.6 mi
1.0" max 1.0" max _.

0.6" min

6' ' "'-- --- --6 L~.O"max
0.6" min
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